Tag: human body

  • मानव कंकाल तंत्र (Human Skeletal System)

    मानव कंकाल तंत्र (Human Skeletal System)

    हमारे शरीर को निश्चित आकार एवं आकृति प्रदान करने के लिए एक ढांचे (structure) की आवश्यकता होती है। बिना ढांचे के शरीर न तो चल-फिर सकेगा और न ही कार्य कर सकेगा। यह ढांचा कंकाल तंत्र कहलाता है। कंकाल तन्त्र बाह्य व अन्तः सजीव या मृत कठोर संरचनाओं का एक तन्त्र है, जो शरीर को सहारा, आकार, सुरक्षा, सन्धि और गति प्रदान करता है।

    कंकाल तंत्र का निर्माण अस्थियाँ, उपास्थियाँ, संधियाँ आदि मिलकर करते हैं। इस तरह अस्थियों, उपास्थियों से मिलकर बने शरीर के ढाँचे को ही कंकाल तंत्र कहते हैं।

    मनुष्य का कंकाल तन्त्र (Human Skeletal System)

    मानव कंकाल तन्त्र छोटी-बड़ी कुल 206 अस्थियों से मिलकर बना हुआ है। मनुष्य की शिशु अवस्था में 300 अस्थियाँ पाई जाती है। अस्थियाँ आपस में सन्धियों द्वारा जुड़ी होती हैं, जिसके ऊपर मांसपेशियाँ पाई जाती है। अस्थि में 50% जल एवं 50% ठोस, अकार्बनिक एवं कार्बनिक पदार्थ पाए जाते हैं।

    मानव अन्तःकंकाल की उत्पत्ति मीसोडर्म से होती है। संरचनात्मक दृष्टि से अंतःकंकाल दो भागों अस्थि एवं उपास्थि से मिलकर बना होता है।

    कंकाल तंत्र के प्रकार (Type of Skeletal System)

    शरीर में उपस्थिति के आधार पर कंकाल तंत्र के दो प्रकार के होते हैं:

    (i) बाहय कंकाल (Exo-skeleton)

    (ii) अंतः कंकाल (Endo-skeleton)

    बाहय कंकाल (Exo-skeleton)

    शरीर की बाहरी सतह पर पाये जाने वाले कंकाल को बाह्य कंकाल (Exo-skeleton) कहा जाता है। बाह्य कंकाल की उत्पत्ति भ्रूणीय एक्टोडर्म या मीसोडर्म से होती है । त्वचा की उपचर्म या चर्म ही बाह्य ककाल के रूप में रूपान्तरित हो जाती है।

    बाह्य कंकाल शरीर के आंतरिक अंगों की रक्षा करता है तथा यह मृत होता है। मछलियों में शल्क, कछुओं में ऊपरी कवच, पक्षियों में पिच्छ, तथा स्तनधारियों में बाल, बाह्य कंकाल के उदाहरण हैं जो इन प्राणियों को अत्यधिक सर्दी एवं गर्मी से सुरक्षित रखने के साथ ही शरीर को सुरक्षा प्रदान करते है |

    अंतः कंकाल (Endo-skeleton)

    शरीर के अंदर पाये जाने वाले कंकाल को अन्तः कंकाल (Endo-skeleton) कहते हैं। इसकी उत्पत्ति भ्रूणीय मीसोडर्म से होती है। अन्तःकंकाल सभी कशेरुकियों में पाया जाता है।

    कशेरुकियों में अन्तःकंकाल ही शरीर का मुख्य ढ़ाँचा बनाता है। यह मांसपेशियों (Muscles) से ढंका रहता है। संरचनात्मक दृष्टि से अन्तःकंकाल दो भागों से मिलकर बना होता है-

    1. अस्थि (Bone)

    2. उपास्थि (Cartilage)

    अस्थि (Bone)

    अस्थि एक ठोस, कठोर एवं मजबूत संयोजी ऊतक है जो तन्तुओं एवं मैट्रिक्स का बना होता है। इसके मैट्रिक्स में कैल्सियम और मैग्नीशियम के लवण पाये जाते हैं तथा इसमें अस्थि कोशिकाएँ एवं कोलेजन तंतु व्यवस्थित होते हैं।

    कैल्सियम एवं मैग्नीशियम के लवणों की उपस्थिति के कारण ही अस्थियाँ कठोर होती हैं। प्रत्येक अस्थि के चारों ओर तंतुमय संयोजी ऊतक से निर्मित एक दोहरा आवरण पाया जाता है जिसे परिअस्थिक कहते हैं। इसी परिअस्थिक के द्वारा लिगामेण्ट्स टेन्ड्न्स तथा दूसरी मांसपेशियाँ जुड़ी होती हैं।

    अस्थि मज्जा (Bone Marrow)

    मोटी तथा लम्बी अस्थियों में एक खोखली गुहा पाई जाती है, जिसे मज्जा गुहा (marrow cavity) कहा जाता है। इसमें स्थित तरल पदार्थ अस्थि मज्जा कहलाता है। यह दो प्रकार की होती है।

    (i) लाल अस्थि मज्जा – इसमें लाल रुधिर कणिकाओं (RBC) का निर्माण होता है। लाल अस्थि मज्जा केवल स्तनधारियों में पायी जाती है

    (ii) पीला अस्थि मज्जा – इसमें श्वेत रुधिर कणिकाओं (WBC)का निर्माण होता है।

    अस्थि के प्रकार

    विकास के आधार पर अस्थियाँ दो प्रकार की होती हैं।

    (i) कलाजात अस्थि (Investing bone)

    (ii) उपास्थिजात अस्थि (Cartilage bone)

    कलाजात अस्थि (Investing bone)

    यह अस्थि त्वचा के नीचे संयोजी ऊतक की झिल्लियों से निर्मित होती है। इसे मेम्ब्रेन अस्थि कहते हैं। खोपड़ी की सभी चपटी अस्थियाँ कलाजात अस्थियाँ होती हैं।

    उपास्थिजात अस्थि (Cartilage bone)

    यह अस्थियाँ सदैव भ्रूण की उपास्थि को नष्ट करके उन्हीं के स्थानों पर बनती हैं। इस कारण इन्हें रिप्लेसिंग बोन भी कहा जाता है। कशेरुक दण्ड तथा पैरों की अस्थियाँ उपास्थिजात अस्थियाँ होती हैं।

    2. उपास्थि (Cartilage)

    उपास्थि का निर्माण ककाली संयोजी ऊतकों से होता है। यह भी एक प्रकार का संयोजी ऊतक होता है। यह अर्द्ध ठोस, पारदर्शक एवं लचीले ग्लाइकोप्रोटीन से बने मैट्रिक्स से निर्मित होता है। उपास्थि का मैट्रिक्स थोड़ा कड़ा होता है। इसके मैट्रिक्स के बीच में रिक्त स्थान में छोटी-छोटी थैलियाँ होती हैं जिसे लैकुनी कहते हैं।

    लैकुनी में एक प्रकार का तरल पदार्थ भरा रहता है। लैकुनी में कुछ जीवित कोशिकाएँ भी पायी जाती हैं, जिसे कोण्ड्रियोसाइट कहते हैं। इसके मैट्रिक्स में इलास्टिन तन्तु एवं कोलेजन भी पाये जाते हैं। उपास्थि के चारों ओर एक प्रकार की झिल्ली पायी जाती है जिसे पेरीकोण्ड्रियम कहते हैं।

    मानव कंकाल तंत्र की अस्थियाँ

    मनुष्य के कंकाल में कुल 206 अस्थियाँ होती हैं। मनुष्य के कंकाल को दो भागों में विभाजित किया जा सकता है।

    (i) अक्षीय कंकाल

    (ii) उपांगीय कंकाल

    1. अक्षीय कंकाल (Axial skeleton)

    शरीर का मुख्य अक्ष बनाने वाले कंकाल को अक्षीय कंकाल कहते हैं। इसमें खोपड़ी की हड्डी, मेरुदंड, पसलियां एवं उरोस्थि होते हैं।

    अक्षीय कंकाल के दो प्रकार होते हैं।

    (i) खोपड़ी (Skull)

    (ii) कशेरुक दण्ड (Vertebral Column)

    खोपड़ी

    मनुष्य के सिर के अन्तः कंकाल के भाग को खोपड़ी कहते हैं इसमें 29 अस्थियाँ होती हैं इसमें से 8 अस्थियाँ संयुक्त रूप से मनुष्य के मस्तिष्क को सुरक्षित रखती हैं। इन अस्थियों से बनी रचना को कपाल कहते हैं।

    कपालों की सभी अस्थियाँ सीवनों के द्वारा दृढ़तापूर्वक जुड़ी रहती हैं इनके अतिरिक्त 14 अस्थियाँ चेहरे को बनाती हैं 6 अस्थियाँ कान को हायड नामक एक और अस्थि खोपड़ी में होती हैं।

    मनुष्य की खोपड़ी में कुल 22 अस्थियाँ होती हैं। इनमें से 8 अस्थियाँ संयुक्त रूप से मनुष्य के मस्तिष्क को सुरक्षित रखती है। इन अस्थियों से बनी रचना को कपाल कहते हैं। ये सभी अस्थियाँ सीवनों के द्वारा जुड़ी रहती है।

    इनके अतिरिक्त 14 अस्थियाँ और होती हैं जो चेहरे को बनाती है। मनुष्य की खोपड़ी में महारन्ध्र नीचे की ओर होता है। महारन्ध्र के दोनों ओर अनुकपाल अस्थिकन्द  होते हैं, जो एटलस कशेरुक के अवतलों में स्थित होते हैं।

    खोपड़ी की मुख्य अस्थियाँ निम्न हैं :

    फ्रॉण्टल (Frontal),

    पेराइटल (Parietal),

    ऑक्सीपिटल (Occipital),

    टेम्पोरल (Temporal),

    मेलर (Maler),

    मैक्सिला (Maxilla),

    डेण्टरी (Dentary),

    नेजल (Nasal)

    कशेरुक दण्ड

    मनुष्य का कशेरुक दण्ड 33 कशेरुकाओं से मिलकर बना है सभी कशेरुक उपास्थि गदिदयो के द्वावा जुड़े रहते हैं। इन गदिदयो से कशेरुक दण्ड लचीला रहता हैं | कशेरुक दण्ड सिर को साधे रहता है तथा गर्दन एवं घड़ को आधार प्रदान करता है। इसमें छोटी-बड़ी 33 हड्डियाँ होती हैं, जिन्हें सामूहिक रूप से कशेरुक कहते हैं।

    कशेरुक दण्ड में अस्थियों का योग

    1. गर्दन (Cervical region) 7 कशेरुक

    2. वक्ष (Thoracic region) 12 कशेरुक

    3. कटि (Lumber region) 5 कशेरुक

    4. त्रिक (Sacral region) 5 कशेरुक

    5. पुच्छ (Caudal region) 4 कशेरुक

    कुल = 33 कशेरूक

    इसका पहला कशेरुक दण्ड जो कि एटलस कशेरुक दण्ड कहलाता हैं।

    कशेरुक दण्ड के कार्य

    यह सिर को साधे रहता हैं।

    यह गर्दन तथा धड़ को आधार प्रदान करता हैं।

    यह मनुष्य को खड़े होकर चलने, खड़े होने आदि में मदद करता हैं।

    यह गर्दन व धड़ को लचक प्रदान करते हैं जिससे मनुष्य किसी भी दिशा में अपनी गर्दन और धड़ को मोड़ने में सफर होता हैं। यह मेरुरज्जु को सुरक्षा प्रदान करता हैं।

    अक्षीय कंकाल खोपड़ी के घटक

    मानव की खोपड़ी में 29 अस्थियां होती हैं जिनमें से 8 अस्थियां मानव के मस्तिष्क को सुरक्षा प्रदान करती हैं और खोपड़ी के अस्थि के जोड़ से जुड़ी होती हैं। बाकी की अस्थियां मनुष्य का चेहरा बनाती है जिनमें से 14 अस्थियां उल्लेखनीय रूप से प्रतिवादी होती हैं।

    2. उपांगीय कंकाल (Appendicular Skeleton)

    उपांगीय कंकाल के अन्तर्गत मेखलाएँ तथा हाथ-पैरों की अस्थियाँ आती हैं।

    • मेखलाएँ
    • अंसमेखला
    • श्रोणि मेखला तथा पैर की अस्थियाँ

    मेखलाएँ (Girdles)

    मनुष्य में अग्रपाद तथा पश्चपाद् को अक्षीय कंकाल पर साधने के लिए दो चाप पाये जाते हैं, जिन्हें मेखलाएँ कहते हैं। अग्रपाद की मेखला को अंसमेखला तथा पश्च पाद की मेखला को श्रोणि मेखला कहते हैं।

    अंस मेखला से अग्रपाद की अस्थि ह्यूमरस एवं श्रोणि मेखला से पश्च पाद की अस्थि फीमर जुड़ी होती है। ये अस्थियाँ गुहाओं में व्यवस्थित होती हैं जिन्हें एसिटेबुलम कहते हैं।

    अंसमेखला तथा हाथ की अस्थियाँ (Bones of dectoral girdle and hand)

    मनुष्य की अंसमेखला के दोनों भाग अलग-अलग होते हैं। इसके प्रत्येक भाग में केवल एक चपटी व तिकोनी अस्थि होती है, जिसे स्कैपुला कहते हैं। यह आगे की पसलियों को पृष्ठ तल की ओर ढके रहती है। इसका आगे वाला मोटा भाग क्लेविकिल से जुड़ा रहता है।

    इसी सिरे पर एक गोल गड्ढ़ा होता है, जिसे ग्लीनॉइड गुहा कहते हैं। ग्लीनॉइड गुहा में ह्यूमरस का सिर जुड़ा रहता है। ग्लीनॉइड गुहा के निकट ही एक प्रवर्द्ध होता है जिसे कोरोकॉइड प्रवर्द्ध कहते हैं। अंसमेखला हाथ की अस्थियों को अपने से जोड़ने के लिए सन्धि स्थान प्रदान करती है। यह हृदय तथा फेफड़ों को सुरक्षा प्रदान करती है। यह मांसपेशियों को अपने से जोड़ने के लिए स्थान प्रदान करती है। मनुष्य के हाथ की अस्थियों में ह्यूमरस, रेडियस अलना, कार्पलस, मेटाकार्पल्स तथा फैलेन्जस होती है। मनुष्य की रेडियस अलना जुड़ी न होकर एक-दूसरे से स्वतंत्र होती है।

    श्रोणि मेखला तथा पैर की अस्थियाँ (Bones of Pelvic girdle and legs)

    मनुष्य की श्रोणि मेखला तीन प्रकार की अस्थियों से मिलकर बनी होती है।

    ये तीनों अस्थियाँ हैं:  इलियम, इश्चियम तथा प्यूबिस

    वयस्क में ये तीनों अस्थियाँ आपस में जुड़ी रहती हैं। प्यूबिस अधर तल पर दूसरी ओर की प्यूबिस से, इलियम आगे की ओर सेंक्रम से तथा इश्चियम पृष्ठ तल की ओर दूसरी ओर की इश्चियम से जुड़ी रहती है। इलियम, इश्चियम तथा प्यूबिस के संधि स्थल पर एक गड्ढ़ा होता है जिसे एसिटेबुलम कहते हैं। एसिटेबुलम में फीमर अस्थि का सिर जुड़ा रहता है।

    श्रोणि मेखला पैरों की अस्थियों को अपने से जोड़ने के लिए संधि स्थान प्रदान करती है। यह अन्तरांगों को सुरक्षा प्रदान करती है। मनुष्य के पैर में फीमर, टिबियो फिबुला, टॉर्सल्स तथा मेटा टॉर्सल्स अस्थियाँ होती हैं। इनमें टिबियोफिबुला मुक्त रहती है।

    फीमर तथा टिबियोफिबुला के सन्धि स्थान पर एक गोल अस्थि होती है, जिसे घुटने की अस्थि या पटेला कहते हैं। इस जोड़ पर मनुष्य का पैर केवल एक ओर ही मुड़ सकता है। टॉर्सल्स में से एक बड़ी होती है जो ऐड़ी बनाती है। तलवे की अस्थियाँ मेटाटॉर्सल्स कहलाती है। अँगूठे में केवल दो तथा अन्य अँगुलियों में तीन-तीन अंगुलास्थियाँ होती हैं।

    कंकाल तंत्र के कार्य :-

    यह शरीर को निश्चित आकृति एवं आधार प्रदान करता है।

    शरीर के आंतरिक कोमल अंगों की बाह्य आघातों से रक्षा करता है।

    यह पेशियों की सहायता से सम्पूर्ण शरीर एवं शरीर के अंगों को गति प्रदान करता है।

    यह शरीर को मजबूती प्रदान करता है।

    हड्डियों के कार्य (Function of skeleton)

    हड्डियां शरीर को एक निश्चित रुप देता है।

    हड्डियां से शरीर को सहारा मिलता है।

    कंकाल से शरीर के अंगों की रक्षा होती है।

    शरीर को बाहरी आघातों से रक्षा करता है।

    कंकाल की मज्जा गुहा फैट को इकट्ठा करता है।

    RBC यानि लाल रक्त कंडिकाओ का निर्माण करता है।

  • मानव परिसंचरण तन्त्र (Human Circulatory System in Hindi) | हृदय (Heart) और रुधिर (Blood) | जन्तुओं में परिसंचरण तन्त्र (Circulatory System in Animals)

    मानव परिसंचरण तन्त्र (Human Circulatory System in Hindi) | हृदय (Heart) और रुधिर (Blood) | जन्तुओं में परिसंचरण तन्त्र (Circulatory System in Animals)

    इस आर्टिकल में हम जानेगे मानव परिसंचरण तन्त्र (Human Circulatory System in Hindi) क्या है ? जन्तुओं में परिसंचरण तन्त्र (Circulatory System in Animals) से क्या तात्पर्य है ? रुधिर परिसंचरण क्षेत्र और लसीका परिसंचरण तन्त्र क्या होते है ? हृदय (Heart) कैसे कार्य करता है ? हृदय (Heart) की संरचना और कार्य क्या है ? लसीका तंत्र (Lymphatic system in Hindi) क्या है ? आदि | साथ ही इसमें मानव परिसंचरण तन्त्र (Human Circulatory System in Hindi) सचित्र और हृदय की संरचना (सचित्र)) (Structure of Heart) के बारे में बताया गया है |

    जन्तुओं में परिसंचरण तन्त्र (Circulatory System in Animals)

    उच्च बहुकोशिकीय जन्तुओं में आवश्यक पदार्थों की आपूर्ति एवं अनावश्यक पदार्थों का बहिष्करण सीधे कोशिका द्वारा न होकर एक विशेष तन्त्र, जिसे परिसंचरण तन्त्र कहा जाता है, द्वारा होता है।

    परिसंचरण तंत्र का अर्थ होता है, एक तत्व को एक स्थान से दुसरे स्थान तक परिवहन करना यानी परिसंचरण तंत्र यातयात का साधन है, जो रक्त का परिवहन करता है |

    यह तन्त्र दो प्रकार का होता है :

    खुला परिसंचरण तन्त्र (Open Circulatory System)

    इसमें केशिका तन्त्र नहीं पाया जाता है। हृदय द्वारा पम्प किया गया रुधिर वाहिकाओं द्वारा सीधे निर्धारित स्थान पर पहुँचता है। इस तन्त्र में रुधिर कम दाब तथा कम वेग से बहता है। इस प्रकार का रुधिर परिसंचरण तन्त्र संघ – एनीलिडा के जन्तुओं तिलचट्टा, कीट, मछली आदि में पाए जाते हैं।

    बन्द परिसंचरण तन्त्र (Closed Circulatory System)

    इसमें रुधिर बंद नलिकाओं में अधिक दाब एवं वेग से बहता है। इसमें पदार्थों का आदान प्रदान ऊतक द्रव्य द्वारा होता है। यह केंचुएँ, मोलस्का एवं सभी कशेरुकियों में पाया जाता है। मनुष्य में विकसित बन्द तथा दोहरा परिसंचरण तन्त्र पाया जाता है।

    मानव परिसंचरण तन्त्र (Human Circulatory System)

    सर विलियम हार्वे व मारसेली मैल्पिजी ने सबसे पहले रुधिर परिसंचरण (Blood circulation) के बारे में बताया था | मनुष्य में बंद परिसंचरण तंत्र (Closed circulatory system) एवं कीटों में खुला परिसंचरण तंत्र  (Open circulatory system) पाया जाता हैं | मानव रुधिर का pH 7.3 से 7.4 होता हैं. यह हल्का क्षारीय होता हैं |

    मनुष्य के रुधिर परिसंचरण तन्त्र में मुख्य संवहनी पदार्थ रुधिर होता है। रक्त परिसंचरण तंत्र शरीर की सभी कोशिकाओ तक प्रयुक्त पोषक तत्व ऑक्सीजन जल तथा अन्य पदार्थो को पहुंचाता है | तथा हमारे शरीर की आंतरिक सुरक्षा करता है |

    ये हमारे शरीर के pH मान को संतुलित बनाए रखता है | ये गैसे से लेकर हार्मोन तक सभी का परिवहन करता है | मनुष्य का रुधिर परिसंचरण तन्त्र दो भागों से मिलकर बना होता है।

    1. रुधिर परिसंचरण क्षेत्र

    2. लसीका परिसंचरण तन्त्र

    हृदय (Heart)

    हृदय

    हृदय एक मोटा, पेशीय, संकुचनशील स्वतः पम्पिंग अंग है। इसका वह भाग, जो शरीर के ऊतकों से रुधिर ग्रहण करता है, अलिन्द (auricle) कहलाता है तथा हृदय वह भाग है, जो ऊतकों में रुधिर पम्प करता है, निलय (ventricle) कहलाता है।

    हृदय वक्ष गुहा (thoracic cavity)

    हृदय वक्ष गुहा (thoracic cavity) में दोनों फेफड़ों के मध्य स्थित होता है।

    हृदय के चारों और द्विकलायुक्त कोष पाया जाता है। यह कला पेरीकार्डियम कहलाती है। दोनों कलाओं के मध्य पेरीकार्डियल द्रव से भरी एक गुहा पाई जाती है। पेरीकार्डियल द्रव हृदय की धक्कों से सुरक्षा करता है।

    मनुष्य का हृदय चार-कोष्ठीय होता है, जिसमें दो अलिन्द एवं दो निलय पाए जाते हैं। अलिन्द की दीवार पतली होती है, जबकि निलय की दीवार अपेक्षाकृत मोटी होती है |

    दायाँ अलिन्द

    दायाँ अलिन्द में सुपीरियर वेना कावा एवं इन्फीरियर वेना कावा से अनॉक्सीकृत रुधिर आता है। दायाँ अलिन्द, दाएँ निलय में एक चौड़े, वृत्तीय दाएँ अलिन्द निलय छिद्र (Auriculoventricular Aperture) द्वारा खुलता है, जो ट्राइकस्पिड वाल्व (Tricuspid Valve) द्वारा ढका होता है।

    ट्राइकस्पिड वाल्व, दाएँ अलिन्द से दाएँ निलय की ओर रुधिर के एक दिशीय प्रवाह को नियन्त्रित करता है।

    दायाँ निलय

    इससे फुफ्फुस धमनी (pulmonary artery) निकल कर फेफड़ों में पहुँचती है, जिसमें अनॉक्सीकृत प्रवाहित होता है।

    बायाँ अलिन्द

    इससे फुफ्फुस शिरा के द्वारा फेफड़ों से ऑक्सीकृत रुधिर आता है। इनमें वाल्व अनुपस्थित होते हैं। बायाँ अलिन्द, बायाँ निलय में, बाएँ अलिन्द-निलय छिद्र द्वारा खुलता है। अलिन्द-निलय छिद्र बाइकस्पिड वाल्व अथवा मिट्रल वाल्व (mitral valve) द्वारा ढका रहता है। बाइकस्पिड वाल्व बाएँ अलिन्द से बाएँ निलय में रुधिर के विपरीत प्रवाह को रोकता है।

    बायाँ निलय

    इससे बड़ी रुधिर नलिका निकलती है जिसे महाधमनी (aorta) कहते हैं। महाधमनी शरीर के विभिन्न भागों में ऑक्सीकृत रुधिर प्रवाहित करती है ।

    हृदय की क्रियाविधि (Mechanism of Heart)

    शरीर में रुधिर का परिसंचरण हृदय की पम्प क्रिया द्वारा सम्पन्न होता है। इसमें दो अवस्थाएँ होती हैं। प्रथम प्रंकुचन (systole) की अवस्था, जिसमें निलय सिकुड़ते हैं और उनमें भरे रुधिर को महाधमनियों में पम्प करते हैं। द्वितीय अवस्था को अनुशिथिलन (diastole) कहते हैं, जिसमें निलय फैलते हैं और अलिन्द से रुधिर प्राप्त करते हैं।

    एक प्रकुंचन तथा एक अनुशिथिलन मिलकर हृदय धड़कन (Heart Beat) का निर्माण करते हैं।

    एक स्वस्थ्य मनुष्य का हृदय 1 मिनट में 72 बार धड़कता है, जबकि कड़ी मेहनत या व्यायाम के फलस्वरूप बढ़कर 1 मिनट में 180 बार तक हो सकता है।

    हृदय की धड़कन दाहिने अलिन्द के ऊपरी भाग में स्थित ऊतकों के समूह शिरा अलिन्द नोड से शुरु होती है, इसे ही पेसमेकर (Pacemaker) कहते हैं

    हृदय के भीतर संकुलन एवं अनुशीथिलन के आवेग का प्रसारण विद्युत रासायनिक तरंगों के रूप में होता है, जो शिरा- अलिन्द नोड (SAN) से प्रारम्भ होकर निलयों तक जाता है। हृदय के धड़कन के दौरान वैद्युत परिवर्तन को इलेक्ट्रोकार्डियोग्राम नामक उपकरण द्वारा रिकार्ड किया जाता है, जिसे इलैक्ट्रोकार्डियोग्राफ या ECG कहते हैं।

    हृदय की संरचना (सचित्र)) (Structure of Heart)

    लसीका तंत्र (Lymphatic system in Hindi)

    लसिका वाहिनियों में लसिका बहती हैं जिसका कार्य कोशिका एवं रुधिर के मध्य पदार्थों के विसरण में सहायता पहुचाना एवं रुधिर से विसरित प्रोटीन एवं श्वेत रक्त कणिकाओं को वापिस रुधिर तक ले जाना हैं | इनका संचरण हमेशा ऊतकों से ह्रदय की ओर ही होता हैं |

    लसिका वाहिनियाँ शिराओं में जाकर खुलती हैं | इन वाहिनियों के मार्ग में मुख्यतः गले, बगल, जांघ एवं पेट आदि में लसिका ग्रंथियां होती हैं इन ग्रंथियों में लिम्फोसाइटस एकत्रित रहती हैं | लसिका ग्रंथियां हमारे शरीर की रोग प्रतिरोधकता में प्रमुख भूमिका निभाती हैं |

    ह्रदय की धड़कन को पेसमेकर नियंत्रित करता हैं.

    एक स्वस्थ वयस्क का रक्त दाब लगभग 120/90 होता हैं ह्रदय के प्रकुचन (Systole) के समय दाब अधिकतम होता हैं और शिथिलन (Diastole) के समय निम्नतम रहता हैं |

    ह्रदय व धमनी सम्बन्धी रोग (Heart and artery disease)

    आस्टियो क्लोरोसिस (Osteosclerosis) – धमनी की दीवारों का अपेक्षाकृत कठोर हो जाना

    उच्च रुधिर दाब (High Blood Pressure)

    थम्बोसिस (Thrombosis) – इसमें रुधिर वाहिका के भीतर रुधिर का धक्का जम जाता हैं.

    ह्रदय मरमर – कई बच्चों में ह्रदय सामान्य परिवर्धित नही होता हैं | और शुद्ध व अशुद्ध रुधिर मिल जाते हैं | या निलय से आलिंद में रुधिर टपकने लगता हैं | जिसे ह्रदय मरमर कहते हैं |

    ह्रदयाघात (Heart attack) – रुधिर वाहिका (धमनियों) में कोलिस्टरोल (cholesterol) जम जाने से रक्त प्रवाह में रुकावट आ जाती हैं और ह्रदय के कार्य करने में रुकावट हो जाती हैं. इससे व्यक्ति की मृत्यु तक हो जाती हैं |

    हृदय से जुड़े महत्वपुर्ण तथ्य (Smart facts about Heart)

    • मछलियों में केवल दो-कोष्ठीय हृदय पाया जाता है जिसमें एक अलिन्द एवं एक निलय होता है।
    • सरीसृपों के हृदय संरचना में तीन कोष्ठीय तथा कार्य में चार-कोष्ठीय (four-chambered) होता है।
    • पक्षियों एवं स्तनियों में हृदय चार कोष्ठीय होता है, जिसमें दो अलिन्द एवं दो निलय होते हैं।
    • पुरुषों में हृदय का औसत वजन 280-340 ग्राम तथा महिलाओं में 230-380 ग्राम होता है।
    • पहली हृदय ध्वनि लब आलिन्द निलय कपाट के बन्द होने के कारण जबकि द्वितीय हृदय ध्वनि डप अर्द्धचन्द्राकार कपाटों के अचानक बाद होने के कारण होती है।
    • दो हृदय ध्वनियों के बीच मरमर की ध्वनि किसी कपाट के खराब होने पर रूधिर के टपकने के कारण होती है।
    • आरटीरियोस्क्लेरोसिस (arteriosclerosis) में धमनी की भित्ती में कोलेस्ट्राल जम जाने के कारण भित्तियाँ कठोर हो जाती है।

    रुधिर (Blood)

    यह लाल संवहनी (vascular) संयोजी ऊतक है, जिसमें हीमोग्लोबिन, हीमोसायिक प्लाज्मा प्रोटीन आदि उपस्थित होते हैं।

    रुधिर नलिकाएँ (Blood Vessels)

    रुधिर नलिकाएँ तीन प्रकार की होती हैं :

    1. धमनियाँ (Arteries)

    मोटी भित्तियुक्त रुधिर नलिकाएँ, जो रुधिर को हृदय से विभिन्न अंगों में पहुँचाती हैं। ये शरीर में गहराई में स्थित होती है तथा इनमें वाल्व का अभाव होता है। फुफ्फुस धमनी के अतिरिक्त सभी धमनियों में ऑक्सीकृत रुधिर प्रवाहित होता है। सभी धमनियों में रुधिर अधिक दाब एवं अधिक गति से बहता है।

    2. शिराएँ (Veins)

    ये पतली भित्ति वाली रुधिर नलिकाएँ हैं, जो विभिन्न अंगों से रुधिर को हृदय तक ले जाती है। ये शरीर में अधिक गहराई में नहीं होती तथा इनमें रुधिर की विपरीत गति को रोकने हेतु वाल्व पाए जाते हैं। इनमें रुधिर कम दाब एवं कम गति से बहता है। फुफ्फुस शिरा के अतिरिक्त सभी शिराओं में अनॉक्सीकृत रुधिर प्रवाहित होता है।

    3. वाहिनियाँ (Capillaries)

    ये सबसे पतली रुधिर नलिकाएँ हैं, जो धमनियों को शिराओं से जोड़ती हैं। प्रत्येक वाहिनी चपटी कोशिकाओं की एक परत से बनी होती है। ये पोषक पदार्थों, वर्ज्य पदार्थों, गैस आदि का रुधिर एवं कोशिका के मध्य आदान-प्रदान करने में सहायक हैं।

    मानव परिसंचरण तन्त्र (Human Circulatory System in Hindi) सचित्र

    समीपस्थ संवलित नलिका (Proximal Convoluted Tubule-PCT)

    सरल घनाकार ब्रुश बॉर्डर उपकला से बनी यह नलिका अवशोषण के लिए सतह क्षेत्र को बढ़ाती है। सभी आवश्यक पोषक 70-80% वैद्युत अपघट्य और जल का पुनः अवशोषण इसी भाग द्वारा होता है। यह pH तथा आयनी सन्तुलन को बनाए रखने का लिए अमोनिया का निस्यन्द में स्रवण और HCO3 का पुनरावशोषण करती है।

    ग्लोमेरुलस में रुधिर लाने वाली अभिवाही धमनिका (afferent arteriole)

    अपवाही धमनिका (efferent arteriole) की अपेक्षा अधिक चौड़ी होती है। इस असामनता के फलस्वरूप गतिरोध उत्पन्न होता है। गतिरोध के कारण ग्लोमेरुलस की रुधिर केशिकाओं में रुधिर दाब काफी बढ़ जाने से रुधिर का प्लाज्मा छनकर (ग्लोमेरूलर निस्यन्द या नेफ्रिक निस्यन्द) बोमैन सम्पुट में आ जाता है।

    हेनले लूप (Loop of Henle)

    न्यूनतम पुनरावशोषण होता है। हेनले लूप की अवरोही भुजा जल के लिए पारगम्य होती है, परन्तु वैद्युतअपघट्य के लिए लगभग अपारगम्य होती है। आरोही भुजा जल के लिए अपारगम्य होती है। अवरोही शाखा में अन्तराकाशी द्रव की बढ़ी समसान्द्रता के कारण जल का पुनरावशोषण होता है। यहाँ पर निस्यन्द प्लाज्मा से अतिपरासारी बन जाता है। आरोही शाखा Na+, K+, Ca+2, Mg+2 तथा CI का पुनरावशोषण होता है।

    दूरस्थ संवलित नलिका (Distal Convoluted Tubule-DCT)

    विशिष्ट परिस्थितियों में Na+ और जल का कुछ पुनरावशोषण रुधिर में सोडियम-पोटैशियम का सन्तुलन तथा pH बनाए रखने के लिए बाइकार्बोनेट्स का पुनरावशोषण एवं H+, K और NH3 का चयनात्मक स्रावण होता है।

    संग्रह नलिका (Collecting Tubule)

    मूत्र को सान्द्र करने के लिए जल का बड़ा हिस्सा इस भाग में अवशोषित किया जाता है। यह pH के नियमन तथा H+ व K+ आयनों के चयनात्मक स्रवण का कार्य करती है।

    मूत्र का संघटन

    24 घण्टे में 1-1.8 लीटर मूत्र का उत्सर्जन

    रंग = पीला (यूरोक्रोम)

    pH = 6.0

    विशिष्ट घनत्व = 1.015-1.02 गन्ध का कारण = यूरीनोड

    जल = 95%

    यूरिया = 2.6%, यूरिक अम्ल = 0.03%, अमोनिया = 0.25%, लवण = 2%

    मूत्र में अनियमितता (Abnormality in Urine)

    (i) प्रोटीन यूरिया – मूत्र में प्रोटीन की उपस्थिति

    (ii) एल्ब्यूमिनयूरिया – मूत्र में एल्ब्यूमिन की उपस्थिति

    (ii) यूरेमिया – मूत्र में अत्यधिक यूरिया का पाया जाना

    (iv) हीमेट्यूरिया – मूत्र में रुधिर का पाया जाना

    (v) पाइयूरिया – मूत्र में WBCs या मवाद (pus) का पाया जाना

    (vi) हीमोग्लोबिनयूरिया – मूत्र के साथ हीमोग्लोबिन का त्याग

    (vi) कीटोन्यूरिया – मूत्र में कीटोन बॉडीज (vill) ग्लाइकोसूरिया – मूत्र में ग्लूकोस

  • श्वसन तन्त्र | Respiratory System | मानव श्वसन तंत्र (Human Respiratory System)

    श्वसन तन्त्र | Respiratory System | मानव श्वसन तंत्र (Human Respiratory System)

    इस आर्टिकल में हम जानेगे की श्वसन तंत्र यानी Respiratory System क्या होता है, मानव श्वसन तंत्र, मानव श्वसन तंत्र की क्रियाविधि, मानव श्वसन तंत्र कैसे कार्य करता है?, मनुष्य श्वसन तंत्र की संरचना क्या होती है, श्वसन के लिय गैसों का विनिमय (Exchange of gases) किस प्रकार होता है, श्वसन से जुडी किण्वन (Fermentation) क्रिया क्या होती है, मानव श्वसन तंत्र से जुड़े महत्वपुर्ण अंग कोनसे है ? श्वसन तंत्र के कितने प्रकार होते है,

    श्वसन तन्त्र (Respiratory System) क्या है ?

    श्वसन एक ऑक्सीकारक एवं ऊर्जा प्रदान करने वाली प्रक्रिया है, जिसमें जटिल कार्बनिक यौगिकों के टूटने से सरल यौगिक बनते है और CO2 गैस मुक्त होती है। अर्थात् श्वसन का आशय ऐसी प्रक्रिया से है, जिसमें वायुमण्डलीय ऑक्सीजन शरीर की कोशिकाओं में पहुँचकर भोजन का ऑक्सीकरण या दहन सम्पूर्ण करती है तथा CO2 गैस बाहर निकलती है। श्वसन की सम्पूर्ण प्रक्रिया को दो भागों में बाँटा जा सकता है |

    बाह्य श्वसन (External Respiration)

    रुधिर एवं वायु के बीच O2 तथा CO2 का आदान-प्रदान बाह्य श्वसन कहलाता है। यह निम्नलिखित दो प्रकार से होता है:

    1. श्वासोच्छवास (Breathing)

    इसके अन्तर्गत फेफड़ों में निश्चित दर से वायु भरी एवं निकाली जाती है, जिसे साँस लेना भी कहते हैं। इसमें मुख्यतया दो क्रियाएँ होती हैं :

    (a) निःश्वसन (Inspiration)

    इस अवस्था में वायु वातावरण से वायु पथ द्वारा फेफड़े में प्रवेश करती है, जिसे नि: श्वसन कहते हैं। निः श्वसन में बाह्य अन्तरपर्शुक पेशियाँ सिकुड़ती हैं, पसलियाँ तथा स्टर्नम ऊपर तथा बाहर की और खिचतें हैं, जिससे वक्षगुहा का आयतन बढ़ जाता है एवं फेफड़ों में निम्न दाब उत्पन्न हो जाता है।

    (b) उच्छश्वसन (Expiration)

    इस क्रिया में श्वसन के पश्चात वायु उसी वायु-पथ के द्वारा फेफड़े से बाहर निकलकर वातावरण में पुन: लौट आती है, जिस वायुपथ से वह फेफड़ों में प्रवेश करती है।

    श्वासोच्छ्वास में प्रयुक्त वायु का संगठन

     नाइट्रोजनऑक्सीजनकार्बनडाइऑक्साइड
    अन्दर ली गई वायु78.09%21%0.03%
    बाहर निकाली गई वायु78.09%17%4%

    निःश्वसन (Inspiration) तथा उच्छश्वसन (Expiration) में अन्तर

    निःश्वसनउच्छश्वसन
    यह वायुमण्डल की वायु का फेफड़ों में प्रवेश की प्रक्रिया है।यह फेफड़ों में भरी वायु का फेफड़ों से बाहर निकलने की क्रिया है।
    इससे फेफड़ों में वायुदाब कम होता है।इससे फेफड़ों में वायुदाब बढ़ता है।
    इसमें डायफ्राम की अरीय पेशियाँ सिकुड़ती हैं, जिससे डायफ्राम चपटा हो जाता है।इसमें डायफ्राम की अरीय पेशियाँ शिथिल हो जाती हैं, जिससे डायफ्राम गुम्बद के समान हो जाता है।
    इसमें प्ल्यूरल गुहाओं का आयतन अधिक होता है।इसमें प्ल्यूरल गुहाओं का आयतन कम होता है।

    2. गैसों का विनिमय (Exchange of gases)

    फेफड़ों के अन्दर गैसों का विनिमय होता है, यह प्रक्रिया घुली अवस्था या विसरणं प्रवणता (diffusion gradient) के आधार पर साधारण विसरण द्वारा होती है। इस क्रिया में फेफड़ों में O2 एवं CO2 का विनिमय उनके दाबों के अन्तर के कारण होता है। इन दोनों गैसों के विसरण की दिशा एक दूसरे के विपरीत होती है।

    श्वासोच्छवास के फलस्वरूप वायु फेफड़े के चारों और विभिन्न वायुकोष्ठकों घना जाल उपस्थित रहता है। इस समय वायु की ऑक्सीजन महीन शिरा केशिकाओं की दीवार से होकर रुधिर में पहुँच जाती है।

    गैसों का परिवहन

    इसके अन्तर्गत O2 का परिवहन रुधिर में पाए जाने वाले लाल वर्णक हीमोग्लोबिन के द्वारा शरीर के विभिन्न कोशिकाओं तक होता है जबकि, CO2 का परिवहन कोशिकाओं से फेफड़ों तक निम्न प्रकार से होता है:

    • CO2 के 70% भाग का परिवहन पोटैशियम बाइकार्बोनेट एवं सोडियम बाइकार्बोनेट के रूप में होता है।
    • CO2 के 23% भाग का परिवहन हीमोग्लोबिन द्वारा।
    • CO2 के 7% भाग का परिवहन प्लाज्मा में घुलकर कार्बनिक अम्ल के रूप में होता है।

    आन्तरिक श्वसन (Internal Respiration)

    शरीर के अन्दर रुधिर एवं ऊतक द्रव्य के बीच गैसीय विनिमय (O2 एवं CO2) आन्तरिक श्वसन कहलाता है।

    कोशिकीय श्वसन (Cellular Respiration)

    कोशिकाओं में कार्बनिक पदार्थों; जैसे ग्लूकोज का ऑक्सीजन द्वारा ऑक्सीकरण की क्रिया कोशिकीय श्वसन कहलाती है। ऑक्सीजन की उपस्थिति या अनुपस्थिति के आधार पर यह श्वसन वायवीय एवं अवायवीय होता है।

    किण्वन (Fermentation)

    यह अवायवीय श्वसन से मिलती-जुलती क्रिया है, जिसमें कार्बनिक यौगिकों का सरल पदार्थों के रूप में विघटन बैक्टीरिया एवं अन्य सूक्ष्मजीवों की उपस्थिति में होता है। यीस्ट कोशिकाओं द्वारा शर्करा का एल्कोहॉलीय किण्वन इसका उदाहरण है। यीस्ट कोशिकाओं में शर्करा के किण्वन से एल्कोहॉल एवं CO2 बनते हैं।

    किण्वन की यह क्रिया जाइमेज (zymase) एन्जाइम की उपस्थिति में होती है। इस क्रिया में भी अवायवीय श्वसन की तरह ग्लाइकोलाइसिस प्रक्रम से बना पाइरुविक अम्ल दो चरणों में CO2 एवं एल्कोहॉल में टूट जाता है तथा समान मात्रा में ऊर्जा मुक्त होती है। यद्यपि किण्वन में एल्कोहॉल एवं CO2 की उत्पत्ति कोशिकाओं के बाहर होती है, जिसके कारण सूक्ष्म जीवों की कोशिकाओं पर एल्कोहॉल का विषैला प्रभाव नहीं पड़ता, जबकि अवायवीय श्वसन में एल्कोहॉल एवं CO2 कोशिकाओं के अन्दर उत्पन्न होते हैं। यही कारण है कि इस विषैले एल्कोहॉल के कारण कोशिकाएँ मृत्यु ग्रस्त हो जाती हैं।

    कोशिकीय श्वसन की क्रियाविधि

    श्वसन क्रिया ग्लूकोस से प्रारम्भ होती है। यह ग्लाइकोलाइसिस तथा वायवीय एवं अवायवीय ऑक्सीकरण में विभाजित होती है। ग्लाइकोलाइसिस (Glycolysis) इसे EMP पथ भी कहा जाता है, चूँकि इसके विभिन्न पदों की खोज क्रमशः एम्बडेन मेयरहॉफ तथा पारनास ने की थी।

    ग्लाइकोलाइसिस की क्रिया कोशिकाद्रव्य (cytoplasm) में सम्पन्न होती है। इस चरण में ग्लूकोज के एक अणु से पाइरुविक अम्ल के दो अणुओं का निर्माण होता है। इसमें ऑक्सीजन की आवश्यकता नहीं होती है अर्थात् यह चरण वायवीय एवं अवायवीय श्वसन दोनों में एक जैसा होता है।

    वायवीय एवं अवायवीय श्वसन में अन्तर

    वायवीय श्वसनअवायवीय श्वसन
    ऑक्सीजन की आवश्यकता होती है।ऑक्सीजन की अनुपस्थिति में होता है।
    श्वसनी पदार्थ का पूरा ऑक्सीकरण होता है।श्वसनी पदार्थ का पूरा ऑक्सीकरण नहीं होता है।
    CO2 व जल अन्तिम उत्पाद होते हैंअन्तिम उत्पाद कोई कार्बनिक यौगिक (जैसे, एल्कोहॉल, लैक्टिक अम्ल आदि) होता है।
    ग्लूकोज के एक अणु से 686 कि कैलोरी ऊर्जा निकलती है अर्थात् 38 ATP का निर्माण होता हैग्लूकोज के एक अणु से केवल 56 कि कैलोरी ऊर्जा प्राप्त होती है अर्थात् 2 ATP का निर्माण होता है।
    वायवीय या ऑक्सीश्वसन का प्रथम चरण कोशिकाद्रव्य में तथा द्वितीय चरण माइटोकॉण्ड्रिया में सम्पन्न होता है।अवायवीय श्वसन की सम्पूर्ण प्रक्रिया कोशिकाद्रव्य में सम्पन्न होती है।

    ग्लाइकोलाइसिस में ग्लूकोस के एक अणु से

    1. पाइरुविक अम्ल के दो अणु बनते हैं।

    2. ATP के चार अणु बनते हैं, परन्तु इस क्रिया में 2 ATP अणु खर्च होते हैं अर्थात् शुद्ध लाभ 2 ATP का होता है।

    3. NADH + H+ के दो अणु बनते हैं। ग्लाइकोलाइसिस की क्रिया में CO2 उत्पन्न नहीं होती है।

    पाइरुविक अम्ल का वायवीय ऑक्सीकरण

    कोशिकाद्रव्य में उत्पन्न हुआ पाइरुविक अम्ल माइटोकॉण्ड्रिया में प्रवेश करता है जहाँ O2 की उपस्थिति में इसका वायवीय ऑक्सीकरण होता है। यहाँ पाइरुविक अम्ल Co-A से मिलकर एसीटाइल Co-A बनाता है, जिसके अर्न्तगत माइटोकॉण्ड्रिया में पाइरुविक अम्ल का ऑक्सीय विकार्बोक्सिलीकरण तथा विहाइड्रोजनीकरण होता है।

    इस क्रिया में 6 ATP अणुओं (2 NADH + H+ = 2×3) का लाभ होता है। यह क्रिया ग्लाइकोलाइसिस एवं क्रैब्स चक्र के मध्य संयोजी कड़ी का कार्य करती है।

    क्रैब्स चक्र (Kerb’s Cycle)

    इस क्रिया की खोज हैन्स क्रैब्स ने की थी। इसे साइट्रिक अम्ल चक्र या ट्राइकार्बोक्सिलिक अम्ल चक्र भी कहा जाता है। यह क्रिया माइटोकॉण्ड्रिया के अन्दर सम्पन्न होती है इस क्रिया के फलस्वरूप एसीटाइल Co-A का पूर्ण ऑक्सीकरण होता है फलस्वरूप H2O, CO2, NADH+H+ तथा ATP उत्पन्न होते हैं।

    एसीटाइल Co-A कोशिका में उपस्थित ऑक्जलोएसीटिक अम्ल एवं जल से क्रिया कर साइट्रिक अम्ल बनाता है। इस साइट्रिक अम्ल का क्रेब्स चक्र में धीरे-धीरे कई अभिक्रियाओं के माध्यम से क्रमबद्ध विघटन होता है।

    इन अभिक्रियाओं के फलस्वरूप कई मध्यवर्ती अम्ल बनते हैं; जैसे—ऑक्जलोसक्सिनिक अम्ल, अल्फा-कीटोग्लूटेरिक अम्ल, सक्सिनिक अम्ल, फ्यूमेरिक अम्ल एवं मैलिक अम्ल। इन परिवर्तनों के फलस्वरूप CO2 के 2 अणु एवं हाइड्रोजन के 8 परमाणु मुक्त होते हैं। अन्ततः मैलिक अम्ल का परिवर्तन ऑक्जलोएसिटिक अम्ल में हो जाता है। यह दूसरे एसिटाइल कोएन्जाइम-A के अणु के साथ संयुक्त होकर क्रैब्स चक्र में पुन: प्रवेश करता है।

    ऊर्जा का उत्पादन

    पाइरुविक अम्ल के एक अणु के ऑक्सीकरण से ATP का एक अणु पाँच अणु NADH2, के व 1 अणु FADH2 का बनता है NADH2 के एक अणु से 3 अणु ATP के , जबकि FADH2 के एक अणु से ATP के 2 अणु प्राप्त होते हैं। इस प्रकार पाइरुविक अम्ल के एक अणु से 1+ ( 3 × 5 ) + ( 2 × 1) = 1+ 15 + 2 = 18 अणु ATP के बनते हैं। चूँकि ग्लूकोज के एक अणु से दो पाइरुविक अम्ल के अणु बनते हैं 2 × 18 = 36 अणु ATP, पाइरुविक अम्ल के दो अणुओं से प्राप्त होते हैं।

    ग्लाइकोलिसिस के दौरान भी 2 ATP अणुओं का लाभ होता है। अतः ग्लूकोज के 1 अणु के ऑक्सीकरण से 2 + 36 = 38 ATP अणु प्राप्त होते हैं। स्पष्ट है कि हमारे तन्त्र में अधिकतम ATP अणुओं को उत्पादन क्रैब्स चक्र के दौरान होता है।

    मानव श्वसन तन्त्र (Human Respiratory System)

    मानव में प्रमुख श्वसन अंग फेफड़े होते हैं, जो वक्षगुहा में, कशेरुकदण्ड तथा पसलियों द्वारा बने एक कटघरे में सुरक्षित रहते हैं। फेफड़ों तक बाहरी वायु के आवागमन हेतु नासिका, प्रसनी, वायुनाल तथा इसकी शाखाएँ मिलकर एक जटिल वायु मार्ग बनाती है अत: ये सारे अंग मिलकर श्वसन तन्त्र बनाते हैं।

    श्वसन पथ का क्रम

    नासाद्वार → ग्रसनी → कण्ठ → श्वासनाल →श्वसनी → श्वसनिकाएँ → फेफड़े → वायुकोष्ठक-केशिका → रुधिर

    मनुष्य में फेफड़े श्वसन तन्त्र में श्वसन अंग का कार्य करते हैं। फेफड़े के ऊपर दोहरी झिल्ली होती है, जिसे फुफ्फुसावरणी या प्लूरा (plura) कहते हैं। मनुष्य में फेफड़ा तीन पालियों में विभक्त होता है, जिसमें स्थित वायु कोष्ठक (alveoli) के माध्यम से गैसों का विनिमय होता है।

    श्वसन भागफल

    श्वसन भागफल (RQ)

    श्वसन भागफल का मान कार्बोहाइड्रेट के लिए = 1, प्रोटीन के लिए = 0.9, वसा के लिए = 0.7, जबकि कार्बनिक अम्ल के लिए = 1 से अधिक

    जन्तुओं में श्वसन वर्णक

    वर्णक स्थिति धात्विक समूह रंग जंतु
    हीमोग्लोबिनRBC एवं प्लाज्मालौहलालसभी कशेरूकी, एनीलिडा एवं मोलस्का
    हीमोसायनिनप्लाज्माताँबानीलाअधिकांश मोलस्का एवं आर्थोपोडा में
    हीमोएरिथिनRBCलौहलालकुछ एनीलिडा में
    क्लोरोक्रुओरिनप्लाज्माताँबाहराकुछ एनीलिडा में
    पिन्नोग्लोबिनप्लाज्मामैंगनीजभूराकुछ मोलस्का में

    कुछ जन्तुओं में श्वसन अंग

    श्वसन अंगजंतु
    फेफड़ेमनुष्य, मेंढक, पक्षी और छिपकली
    त्वचामेंढक और केंचुआ
    क्लोममेंढक का लार्वा और मछली
    श्वसन नालकीट
    बुक फेफड़ेमकड़ी और बिच्छु

    श्वसन विकार

    एम्फाइसमा सिगरेट पीने से फेफड़े में स्थित, वायु कूपिकाओं में समस्या आ जाती है । जैसे- श्वसनी दमा, श्वसनी शोथ, न्यूमोनिया, सायनोसिस आदि।

    मानव श्वसन तन्त्र (Human Respiratory System) से जुड़े महत्वपुर्ण तथ्य

    मनुष्य में श्वसन को नियन्त्रण करने वाला श्वसन केन्द्र मेड्यूला ऑब्लोंगेटा में होता है।

    जब कार्बोहाइड्रेट का अवायवीय श्वसन होता है, तो श्वसन भागफल (RQ) अनन्त (infinite) होता है ।

    हीमोग्लोबिन से CO (कार्बन मोनोक्साइड) के मिलने की क्षमता ऑक्सीजन की क्षमता से लगभग 250 गुना अधिक होती है।

    हैमबर्गर प्रक्रिया का सम्बन्ध CO2 के परिवहन से है।

    फेफड़ों में हैल्डेन प्रभाव हीमोग्लोबिन द्वारा O2 ग्रहण करने के कारण CO2 के बहिष्कार को प्रोत्साहित करता है, जबकि ऊतकों में यह O2 के बहिष्कार को प्रोत्साहित करता है।
    श्वसन भागफल गैनाँग के रेसपाइरोमीटर द्वारा मापा जाता है।

    श्वसन को प्रभावित करने वाले कारक

    • ऑक्सीजन इसकी उपस्थिति में वायवीय श्वसन तथा अनुपस्थिति में अवायवीय श्वसन होता है।
    • तापमान 0°C-35°C तापक्रम के बीच प्रत्येक 10°C तापमान बढ़ने पर श्वसन की दर 2-2.5 गुना बढ़ती है।
    • कार्बन डाइऑक्साइड वायुमण्डल में CO2 की सान्द्रता बढ़ने पर श्वसन की दर कम हो जाती है।
    • जल इसकी मात्रा बढ़ने से श्वसन दर एक सीमा तक बढ़ती है। अत्यन्त कम जल मात्रा में श्वसन की दर न्यूनतम होती है।
    • प्रकाश श्वसन दिन-रात होता है, परन्तु प्रकाश की उपस्थिति में तापमान बढ़ने व श्वसन प्रयुक्त पदार्थों की मात्रा अधिक होने के कारण श्वसन दर बढ़ जाती है।
    • क्षति क्षतिग्रस्त ऊतकों में श्वसन की दर अस्थायी रूप से तीव्र हो जाती है।
    • संदमक विभिन्न रासायनिक पदार्थ-सायनाइड, CO मैलोनेट आदि श्वसन को संदमित करते हैं।
  • मानव पाचन तंत्र | Human Digestive System in Hindi – Detailed

    मानव पाचन तंत्र | Human Digestive System in Hindi – Detailed

    इस आर्टिकल में हम जानेगे की मानव पाचन तंत्र (Human Digestive System) किस तरह से काम करता है, कोनसे अंग इस प्रक्रिया में महत्वपुर्ण भूमिका निभाते है, मुखगुहा (Buccal Cavity), आमाशय (Stomach), छोटी आंत (Small Intestine), बड़ी आंत (Large Intestine) द्वारा कैसे पाचन की क्रिया पूर्ण होती है, साथ ही जानेगे की पचे हुए भोजन का अवशोषण एवं स्वांगीकरण (Absorption and Assimilation of Digestive Food) कैसे होता है, अपचित भोजन का बहिष्करण (Egestion of Indigested Food) कैसे होता है, पाचन से सम्बन्धित ग्रन्थियाँ (Glands Related to Digestion) कोन कोंनसी है, यकृत के कार्य (Function of Liver) क्या है?, अग्नाशय (Pancreas) क्या है? और पाचन से जुड़े महत्वपुर्ण तथ्य कोनसे है आदि |

    बहुकोशिकीय जीवधारियों में शरीर की कोशिकाएँ अलग-अलग कार्य करने के लिए विशिष्टीकृत हो जाती हैं। इस विशिष्टीकरण के कारण इनकी रचना भी अपने-अपने कार्यों के अनुरूप भिन्न-भिन्न हो जाती हैं। इस प्रकार बहुकोशिकीय जीवधारियों के शरीर में विभिन्न प्रकार की कोशिकाओं के समूह बन जाते हैं, जिसे ऊतक कहा जाता है। कई ऊतकों के समूह अंग एवं कई अंग मिलकर अंग तन्त्र बनाते हैं, जैसे—मुख, आमाशय, यकृत आदि अंग मिलकर पाचन हेतु पाचन तन्त्र बनाते हैं।

    मानव पाचन तंत्र क्रिया (process of Human Digestive System)

    वे जटिल भौतिक एवं रासायनिक प्रक्रियाएँ, जिनके द्वारा जटिल एवं अघुलनशील भोज्य कणों को सरल, घुलनशील एवं अवशोषण योग्य भोज्य कणों में परिवर्तित किया जाता है, पाचन कहलाता है। मानव पाचन तंत्र (Human Digestive System) यानी भोजन के पाचन की क्रिया पाँच चरणों में; जैसे- अन्तर्ग्रहण, पाचन, अवशोषण, स्वांगीकरण तथा मल त्याग में पूर्ण होती है।

    मनुष्य के पाचन तन्त्र में एक आहारनाल और सहयोगी ग्रन्थियाँ होती हैं। आहारनाल मुख, मुखगुहा, ग्रसनी, प्रसिका, आमाशय, क्षुद्रान्त्र (छोटी आंत), वृहदान्त्र (बड़ी आंत), मलाशय और मल द्वार से बनी होती है। सहायक पाचन ग्रन्थियों में लार अन्थि, यकृत और अग्न्याशय हैं।

    मुखगुहा में पाचन (Digestion in Buccal Cavity)

    मुख के अन्दर दाँत भोजन को चबाते हैं। जीभ स्वाद को पहचानती है और भोजन को लार के साथ मिलाकर इसे अच्छी तरह से चबाने के लिए सुगम बनाती है। लार में उपस्थित टायलिन या एमाइलेज एन्जाइम स्टार्च पर कार्य करता है और स्टार्च को माल्टोज शर्करा में अपघटित कर देता है तथा माल्टेज एन्जाइम माल्टोज शर्करा को ग्लूकोज में बदल देता है।

    मनुष्य के ऊपरी व निचले जबड़ों में कुल 32 दाँत होते हैं। मनुष्य के दाँत गर्तदन्ती (thecodont), द्विवारदन्ती (diphyodont ) तथा विषमदन्ती (heterodont) तीन प्रकार के होते हैं। मनुष्य के जबड़े में दो कृन्तक, एक रदनक, दो अग्रचवर्णक तथा तीन चवर्णक दाँत पाये जाते हैं।

    मनुष्य दन्तसूत्र

    जीभ

    जीभ मुखगुहा के निचले भाग पर स्थित एक मोटी मांसल रचना होती है, जिसकी ऊपरी सतह पर कई छोटे-छोटे अंकुर (papillae) होते हैं, जिन्हें स्वाद कलियाँ ( taste buds) कहते हैं। जीभ के अग्रभाग से मीठे स्वाद का पश्च भाग से कड़वे स्वाद का तथा बगल के भाग से खट्टे स्वाद का आभास होता है। टायलिन एन्जाइम के कारण भोजन के स्वाद में मिठास आ जाती है।

    आमाशय में पाचन (Digestion in Stomach)

    मुखगुहा से लार से सना हुआ भोजन निगल द्वार के द्वारा ग्रासनली (Oesophagus) में पहुँचता है, जहाँ से क्रमाकुंचन की प्रक्रिया द्वारा ग्रासनली से आमाशय में भोजन परन्तु पहुँचता है। आमाशय में प्रोटीन एवं वसा का पाचन प्रारम्भ हो जाता है, कार्बोहाइड्रेट का पाचन नहीं होता है।

    आमाशय में पाइलोरिक ग्रन्थियों से जठर रस (gastric juice) निकलता है, जबकि ऑक्सिन्टिक या भित्तिय कोशिकाओं से HCI निकलता है। जठर रस में पेप्सिन और रेनिन एन्जाइम होते है, जिसमें से पेप्सिन प्रोटीन को पाचन कर उसे पेप्टोन्स में बदल देती है, जबकि रेनिन दूध में घुली हुई प्रोटीन केसीन को ठोस प्रोटीन कैल्शियम पैराकेसीनेट में परिवर्तित कर देती हैं। इस प्रकार दूध फट जाता है। अब पेप्सिन इस प्रोटीन (केसीन) को पेप्टोन्स में परिवर्तित कर देती है। आमाशय में वसा पाचक एन्जाइम जठर लाइपेज वसीय पदार्थों पर क्रिया कर उसे छोटे-छोटे अणुओं में तोड़ देता है।

    आमाशय में स्रावित HCI मुख्य रूप से भोजन के माध्यम को अम्लीय बनाता है, जिससे लार के टाइलिन की क्रिया समाप्त हो जाती है। यह अम्ल भोजन के साथ आए जीवाणुओं को नष्ट कर देता है तथा एन्जाइम की क्रिया को तीव्र कर देता है।

    छोटी आंत में पाचन (Digestion in Small Intestine)

    छोटी आंत में पित्त, अग्न्याशयी रस तथा आंत रस आकर मिलते हैं तथा भोजन का पाचन पूर्ण करते हैं। पित्त एवं अग्न्याशयी रस आंत के pH को क्षारीय करते हैं। इसमें तीन एन्जाइम होते हैं, जिसमें ट्रिप्सिन, प्रोटीन को पॉलीपेप्टाइड एवं अमीनो अम्ल में, एमाइलेज स्टार्च को सरल शर्करा में, जबकि लाइपेज वसीय पदार्थों को ग्लिसरॉल एवं वसीय अम्ल (fatty acid) में तोड़ देता है। छोटी आंत आहारनाल का सबसे लम्बा भाग होता है। आहारनाल के इसी भाग में पाचन की क्रिया पूर्ण होती है।

    बड़ी आंत में पाचन (Digestion in Large Intestine)

    बड़ी आंत में उपस्थित चूषक कोशिकाएँ (goblet cells) श्लेष्मा का स्रावण करती हैं। यहाँ पर अपचे भोजन से जल का अवशोषण होता है फलतः मल गाढ़ा हो जाता है। शाकाहारी जन्तुओं के भोजन में उपस्थित सेलुलोज का पाचन यहीं पर होता है, जहाँ विद्यमान सहजीवी जीवाणु (symbiotic bacteria) इस सेलुलोज को शर्करा में बदल देती है।

    पचे हुए भोजन का अवशोषण एवं स्वांगीकरण (Absorption and Assimilation of Digestive Food)

    छोटी आंत में ही पचे भोजन का अवशोषण मुख्य रूप से होता है। छोटी आंत की सतह पर अंगुलीनुमा उभार पाए जाते हैं, जिन्हें आंत रसाकुंरों (intestinal villi) कहते हैं। इन्हीं रसांकुरों पर रुधिर केशिकाएँ और लिम्फ वाहिनियाँ का जाल बिछा होता है, जो पचे भोजन के अवशोषण में सहायक होती हैं। रुधिर केशिकाओं से ग्लूकोज तथा अमीनो अम्ल का अवशोषण, जबकि वसा अम्ल एवं ग्लिसरोल का अवशोषण लसीका (lymph) द्वारा हो जाता है।

    अपचित भोजन का बहिष्करण (Egestion of Indigested Food)

    बड़ी आंत में जल का अवशोषण होने के बाद शेष बचा अपच भोजन मलाशय के माध्यम से मलद्वार द्वारा बाहर निकल जाता है। अंतत: इसी प्रक्रिया के साथ पाचन की क्रिया समाप्त होती है।

    पाचन से सम्बन्धित ग्रन्थियाँ (Glands Related to Digestion)

    लार ग्रन्थि (salivary glands) तीन जोड़ी (i) अधोजिह्वा ग्रन्थि (sublingual glands) जिह्वा के दोनों ओर, एक-एक (ii) अधोजम्भ ग्रन्थि (sub-maxillary gland) निचले जबड़े के मध्य एक-एक (iii) कर्ण पूर्व ग्रन्थि (parotid gland) कर्णों के नीचे दोनों ओर एक-एक । लार में लगभग 99% जल, लगभग 1% एन्जाइम होते हैं। इसमें टायलिन एवं लाइसोजाइम नामक एन्जाइम होता है। लार कुछ तत्व; जैसे-लैड (शीशा) Pb, मर्करी (Hg) व आयोडाइड (I2) का स्रावण करती हैं।

    यकृत (liver) सबसे बड़ी ग्रन्थि है। मनुष्य में इसका भार लगभग 1.5 किलोग्राम होता है।

    यकृत के शिरापात्रों (sinusoids) में कुप्फर कोशिकाएँ पाई जाती हैं, जो मृत RBCs व जीवाणुओं का भक्षण करती हैं।

    यकृत के कार्य (Function of Liver)


    यकृत पित्त का स्रावण करता है, जो पित्ताशय (gall-bladder) में संचित होता है संग्रह करता है। तथा ग्लाइकोजन हिपेरिन, फाइब्रिनोजन तथा प्रोथ्रॉम्बिन का स्रावण करता है।

    यकृत प्रोटीन उपापचय में भाग लेता है, जिसके फलस्वरूप अमोनिया, यूरिया आदि उत्पन्न होते हैं। यकृत अमोनिया को यूरिया में बदल देता है।

    यूरिया का संश्लेषण करता है तथा विटामिन A, D तथा B12 का निर्माण करता है।

    अमीनो अम्लों का डीऐमीनेशन तथा विषैले पदार्थों का विषहरण (detoxification) करता है।

    फैगोसाइटोसिस क्रिया द्वारा जीवाणुओं का भक्षण करता है। भ्रूणावस्था में लाल रुधिराणुओं का निर्माण करता है।

    अग्नाशय (Pancreas)

    यह शरीर की दूसरी बड़ी मिश्रित प्रन्थि (mixed gland) है। इसके अन्तःस्रावी भाग में निम्न प्रकार की कोशिकाएं होती है।

    एल्फा कोशिकाएँ (α-cells), जो ग्लूकेगॉन हॉर्मोन स्रावित करती हैं।

    बीटा कोशिकाएँ (β-cells), जो इन्सुलिन हॉमोन स्रावित करती हैं। इन्सुलिन रुधिर में शर्करा की मात्रा को नियन्त्रित करने का काम करता है। इन्सुलिन के अल्प स्रावण से मधुमेह (diabetes) नामक रोग हो जाता है।

    डेल्टा कोशिकाएँ (δ-cells), जो सोमेटोस्टेटिन हॉर्मोन स्रावित करती हैं।

    • अग्न्याशय का बाह्य या एक्सोक्राइन भाग जिसे एसीनी कोशिकाएँ कहते हैं अग्न्याशयी रस का स्त्रावण करता है, जो भोजन के पाचन में सहायक है।

    मानव पाचन तंत्र (Human Digestive System) की क्रिया सचित्र

    मानव पाचन तंत्र (Human Digestive System) से जुड़े महत्वपुर्ण तथ्य

    लार में उपस्थित टायलिन एन्जाइम का स्रावण पेरोटिड ग्रन्थियाँ द्वारा होता है ।

    लार में उपस्थित छोटी आंत में बुनर्स ग्रन्थियों द्वारा आंत्र रस निकलता है ।

    बड़ी आंत में उपस्थित सैलोबायोपैरस एवं क्लॉस्ट्रिडियम जीवाणु तथा एन्टोडोनियम नामक प्रोटोजोआ सीकम में सेलुलोज के पाचन में सहायता करते हैं ।

    मनुष्य की दाँत का प्रमुख भाग डेन्टीन का बना होता है ।

    पाइलोरिक वाल्व आमाशय एवं ग्रहणी के बीच पाए जाते हैं ।

    बाइलीरुबिन एवं बिलीवर्डिन वर्णक पित्त रस में पाए जाते है ।

    लाइसोजाइम एक प्रति जीवाणु एन्जाइम है, जो भक्षक कोशिकाओं, आँसुओं, लार एवं स्वेद स्रावों में पाया जाता है ।

    मानव पाचन तंत्र का नामांकित चित्र

  • तंत्रिका ऊतक (Nervous Tissue) क्या है ?

    तंत्रिका ऊतक (Nervous Tissue) क्या है ?

    बहुकोशिकीय जन्तुओं में पाये जाने वाले ऊतकों की चार प्रमुख श्रेणियाँ होती हैं:

    1. उपकला या एपीथीलियमी ऊतक (Epithelial tissues)
    2. संयोजी ऊतक (Connective Tissue)
    3. पेशीय ऊतक (Muscular Tissue)
    4. तंत्रिकीय ऊतक (Nervous Tissue)

    इस आर्टिकल में हम बात करेगे तंत्रिका ऊतक (Nervous Tissue) के बाते में |

    तंत्रिका ऊतक (Nervous Tissue)

    तंत्रिका ऊतक मस्तिष्क (brain), रीढ़ की हड्डी (spinal cord) और तंत्रिकाओं (nerves) में पाए जाते हैं। यह शरीर की कई गतिविधियों के समन्वय और नियंत्रण के लिए जिम्मेदार है। यह मांसपेशियों के संकुचन को उत्तेजित करता है, पर्यावरण के बारे में जागरूकता पैदा करता है, और भावनाओं, स्मृति और तर्क में एक प्रमुख भूमिका निभाता है। इन सभी चीजों को करने के लिए, तंत्रिका ऊतक में कोशिकाओं को विद्युत तंत्रिका आवेगों (electrical nerve impulses) के माध्यम से एक दूसरे के साथ संवाद करने में सक्षम होती है ।

    तन्त्रिका ऊतक संवेदना को शरीर के एक भाग से दूसरे भाग में भेजने का कार्य करता है। इसका निर्माण एक्टोडर्म से होता है। यह ऊतक तन्त्रिका ऊतक या न्यूरॉन का बना होता है। लम्बे तन्त्रिका तन्तु जिसे एक्सॉन भी कहते हैं एक न्यूरॉन के एक्सॉन की अन्तिम छोर की शाखाएँ दूसरे न्यूरॉन के डेन्ड्राइट्स से जुड़कर सिनैप्स बनाती है। आवेग का संचार एक्सॉन की एक कोशिका से दूसरी कोशिका के डेन्ड्राइट्स तक होने से होता है।

    न्यूरॉन्स और तंत्रिका उत्तक

    तंत्रिका ऊतक में कोशिकाएँ जो आवेग (impulses) उत्पन्न करती हैं और संचालित करती हैं, न्यूरॉन्स या तंत्रिका कोशिकाएँ (neurons or nerve cells) कहलाती हैं। न्यूरॉन में एक बड़ी कोशिका काय (cell body), साइटोन, पैरोकैरिऑन पाई जाती हैं। इससे डेन्ड्राइट (dendrites ) और एक्सॉन (Axon) निकलता है। कोशिका काय ((Cell body) में एक केन्द्रक होता है तथा निसल के कण (Nissl’s granules) उपस्थित होते हैं। एक्सॉन की कोशिका कला को एक्सोलेमा तथा कोशिकाद्रव्य को एक्सोप्लाज्म कहते हैं। एक्सॉन दूरस्थ छोर पर छोटी-छोटी शाखाओं में विभाजित हो जाता है, जिन्हें टीलोडेण्ड्रिया कहते हैं।

    नोट:

    कोशिका का मुख्य भाग, वह भाग जो सामान्य कार्य करता है, कोशिका काय (the cell body) होता है।

    डेंड्राइट कोशिका द्रव्य (cytoplasm) के विस्तार, या प्रक्रियाएं हैं, जो कोशिका शरीर में आवेगों (impulses) को ले जाती हैं।

    एक एक्सॉन कोशिका काय (the cell body) से आवेगों (impulses) को दूर करता है।

    तंत्रिका ऊतक में कोशिकाएं भी शामिल होती हैं जो आवेगों को संचारित नहीं करती हैं, बल्कि न्यूरॉन्स (neurons) की गतिविधियों का समर्थन करती हैं। ये ग्लियल कोशिकाएं (Glial cells) (न्यूरोग्लिअल कोशिकाएं) (neuroglial cells) हैं, जिन्हें एक साथ न्यूरोग्लिया (neuroglia) कहा जाता है। सहायक, या ग्लिया, कोशिकाएं न्यूरॉन्स को एक साथ बांधती हैं और न्यूरॉन्स को इन्सुलेट (insulate) करती हैं। इन कोशिकाओं में कुछ फागोसाइटिक (phagocytic) होते हैं और बैक्टीरिया के आक्रमण से बचाते हैं, जबकि अन्य रक्त वाहिकाओं को न्यूरॉन्स से बांधकर पोषक तत्व प्रदान करते हैं।

  • रुधिर (Blood) क्या है, Rudhir अर्थ, परिभाषा, कार्य, रुधिर कोशिकाएँ, प्लाज्मा, हीमोग्लोबिन, स्कन्दन या थक्का, लसिका, Rh-समूह, Blood Group – in Hindi

    रुधिर (Blood) क्या है, Rudhir अर्थ, परिभाषा, कार्य, रुधिर कोशिकाएँ, प्लाज्मा, हीमोग्लोबिन, स्कन्दन या थक्का, लसिका, Rh-समूह, Blood Group – in Hindi

    इस आर्टिकल में हम रुधिर (Blood) जिसे खून या ब्लड भी कहा जाता है के बारे में बतायेगे | इस आर्टिकल में हम जानेगे कि रुधिर क्या होता है ? रुधिर का शरीर के लिए क्या महत्त्व है ? रुधिर के कार्य क्या है ? रुधिर के प्रमुख घटक कोनसे है ? रुधिर कोशिकाय क्या है ? लाल रुधिर कोशिकाएँ,  श्वेत रुधिर कोशिकाएँ, विंबाणु, या प्लेटलेट् क्या होते है ? प्लाज्मा (Plasma) क्या होता है ? हीमोग्लोबिन (Haemoglobin) क्या होता है ? खून का स्कन्दनयाथक्का कैसे जमता है ? Rh-समूह और रुधिर समूह (Blood Group) क्या होते है ? लसिका क्या है ? आदि |

    रुधिर क्या होता है ? (What is Blood)

    रुधिर एक लाल, वाहक संयोजी ऊतक (vascular connective tissue) है, जो एक चिपचिपा अपारदर्शी द्रव है। इसकी श्यानता (viscosity) 4.7 तथा क्षारीय प्रकृति (pH 7.54) होती है। ऑक्सीकृत रुधिर चमकीले लाल रंग का होता है, जबकि अनॉक्सीकृत रुधिर गुलाबी नीले रंग का होता है। रूधिर में प्लाज्मा एवं रुधिर कोशिकाएँ होती है |

    यह सम्पूर्ण शरीर का लगभग 6-10% भाग बनाता है। एक वयस्क मनुष्य में लगभग 5.8 लीटर रुधिर पाया जाता है। ऊँचे स्थानों पर रहने वाले लोगों में नीचे स्थानों पर रहने वाले लोगों की तुलना में अधिक रुधिर पाया जाता है। रुधिर दो भागों यथा प्लाज्मा और रुधिर कणिकाओं का बना होता है।

    उच्च अकशेरुकी , कशेरुकी एवं मानव में पोषक पदार्थो , गैसों , हार्मोन , अपशिष्ट पदार्थों एवं अन्य उत्पादों के परिवहन के लिए रुधिर पाया जाता है जिसे एक पेशीय ह्रदय द्वारा पम्प किया जाता है , इस सम्पूर्ण तंत्र को परिसंचरण तन्त्र कहते है , परिसंचरण तंत्र के निम्न भाग होते है –

    (i) रुधिर (ii) ह्रदय (iii) रुधिर वाहिकाएँ (iv) रुधिर (blood)

    रुधिर के दो भाग है : (1) द्रव भाग, जिसे प्लाज़्मा कहते हैं और (2) ठोस भाग, जो कोशिकाओं का बना होता है। रुधिर कोशिकाएँ तीन प्रकार की होती हैं : (1) लाल रुधिर कोशिकाएँ (2) श्वेत रुधिर कोशिकाएँ और (3) विंबाणु, या प्लेटलेट्। प्लाज़्मा में 91 से 92 प्रति शत जल और शेष में (क) सोडियम, पोटैशियम और कैल्सियम, (ख) वसा, (ग) शर्करा, (घ) प्रोटीन आदि होते हैं।

    प्लाज्मा (Plasma)

    प्लाज्मा पीले रंग का निर्जीव द्रव है, जो हल्का क्षारीय होता है। यह रुधिर के सम्पूर्ण आयतन का लगभग 55-60% भाग होता है।

    प्लाज्मा के संघटक

    जल – 90-62%

    अकार्बनिक लवण – 1-2%

    प्लाज्मा प्रोटीन – 6-7%

    अन्य अकार्बनिक यौगिक –   1-2%

    अवयवमात्राप्रमुख कार्य
    1.       जल90%रुधिर दाब व आयतन बनाए रखना
    2.       कार्बनिक पदार्थ  
    (a)     एल्बुमिन45%परासरण दाब उत्पन्न करना
    (b)     ग्लोबुलिन2.5%परिवहन व प्रतिरक्षी उत्पन्न करना
    (c)     फाइब्रिनोजन0.3%रुधिर स्कंदन
    (d)     प्रोयोम्बिनरुधिर स्कंदन
    (e)     ग्लूकोज0.1%पोषक पदार्थ , कोशिकीय इंधन
    (f)      एमीनो अम्ल0.4%पोषक पदार्थ
    (g)     वसा अम्ल0.5%पोषक पदार्थ
    (h)     हार्मोन एंजाइमनियामक पदार्थ
    (i)       यूरिया , यूरिक अम्ल0.4%अपशिष्ट पदार्थ
    (j)       अकार्बनिक पदार्थ0.9%विलेय विभव एवं pH का नियमन करना

    प्लाज्मा के कार्य (Function of Plasma)

    सरल भोज्य पदार्थों (ग्लूकोज, अमीनो अम्ल आदि) का आँत्र एवं यकृत से शरीर के अन्य भागों से में परिवहन करता है।

    यह उपापचयी वर्ज्य पदार्थों; जैसे- यूरिया, यूरिक अम्ल आदि का ऊतकों से वृक्कों (kidney) तक उत्सर्जन हेतु परिवहन करता है।

    यह अन्तःस्रावी ग्रन्थि से लक्ष्य अंगों तक हॉर्मोनों का परिवहन करता है।

    यह रुधिर का pH स्थिर रखने में सहायक होता है।

    प्लाज्मा में उपस्थित रुधिर प्रोटीन एवं फाइब्रिनोजन रुधिर का थक्का जमाने में सहायक होते हैं ।

    रुधिर कणिकाए (Blood Corpuscles or Blood Cells)

    ये कोशिकाएँ प्लाज्मा में पाई जाती हैं, जो रुधिर प्लाज्मा का 40-45% भाग होती है। रुधिर कणिकाओं का प्रतिशत हीमेटोक्रिट मूल्य (Haematocrit Value) या पैक्ड सैल वॉल्यूम) (Packed Cell Volume) कहलाता है। इसमें तीन कणिकाएँ – लाल रुधिर कणिकाएँ, श्वेत रुधिर कणिकाएँ तथा रुधिर प्लेटलेट्स होती हैं।

    लाल रुधिर कणिकाएँ (Red Blood Corpuscles-RBCs)

    ये स्तनधारियों के अतिरिक्त सभी कशेरुकियों में अण्डाकार, द्विउत्तल एवं केन्द्रकीय होती हैं। स्तनियों में (ऊँट एवं लामास को छोड़कर) RBCs गोलाकार, द्विअवतल और केन्द्रक विहीन होती हैं। लाल रुधिर कोशिकाएँ लाल रंग की होती हैं। हीमोग्लोबिन के कारण इनका रंग लाल होता है। ये 7.2 म्यू व्यास की गोल परिधि की और दोनों ओर से पैसे या रुपए के समान चिपटी होती हैं। इनमें केंद्रक नहीं होता। वयस्क पुरुषों के रुधिर के प्रति घन मिलीमीटर में लगभग 50 लाख और स्त्रियों के रुधिर के प्रति घन मिलिमीटर में 45 लाख लाल रुधिर कोशिकाएँ होती हैं। इनकी कमी से रक्तक्षीणता तथा रक्त श्वेताणुमयता (Leukaemia) रोग होते हैं। इन्हें इरिथ्रोसाइट्स भी कहते है |

    RBCs की अतिरिक्त मात्रा प्लीहा (spleen) में संग्रहित होती है, जो रुधिर बैंक (Blood Bank) की भाँति कार्य करती है। गर्भस्थ शिशु में RBCs का निर्माण यकृत एवं प्लीहा में, जबकि शिशु के जन्म के उपरान्त इसका निर्माण मुख्यतया अस्थि मज्जा (bone-marrow) में होता है। मनुष्य का RBCs का औसत जीवनकाल 120 दिन का, जबकि मेंढक एवं खरगोश के RBCs का औसत जीवनकाल क्रमशः 100 तथा 50-70 दिन होता है।

    लाल रुधिर कोशिका का विकास

    आधुनिक मत के अनुसार लाल रुधिर कोशिकाओं का निर्माण रक्त परिसंचरण तंत्र के बाहर होता है।सबसे पहले बनी कोशिका हीमोसाइटोब्लास्ट (Haemoctoblast) कहलाती है। पीछे यह कोशिका लाल रुधिर कोशिका में बदल जाती है। भ्रूण में लाल रुधिर कोशिका रुधिर परिसंचरण क्षेत्र में बनती है। पहले इसके मध्य में केंद्रक होता है, जो पीछे विलीन हो जाता है। शिशुओं के मध्यभ्रूण जीवन से लेकर जन्म के एक मास पूर्व तक लाल रुधिर कोशिकाओं का निर्माण यकृत एवं प्लीहा में होता है। शिशु जन्म के बाद लाल रुधिर कोशिकाएँ अस्थिमज्जा में बनती हैं।

    हीमोग्लोबिन (Haemoglobin)

    RBCs में एक लाल प्रोटीन रंजक हीमोग्लोबिन पाया जाता है, जो एक प्रोटीन ग्लोबिन (96%) तथा रंजक हीम  (4-5%) से बना होता है। हीम अणु के केन्द्र में ‘लौह’ होता है। हीमोग्लोबिन ऑक्सीजन के परिवहन का कार्य करता है । RBCs का रंग वैसे तो पीला होता है, परन्तु हीमोग्लोबिन के कारण लाल दिखाई देता है।

    हीमोग्लोबिन ही ऑक्सीजन का अवशोषण करता है और इसको रक्त द्वारा सारे शरीर में पहुँचता है। रुधिर में हीमोग्लोबिन की मात्रा 14.5 ग्राम प्रतिशत है। अनेक रोगों में इसकी मात्रा कम हो जाती है। हीम (Haem) का सूत्र (C34 H30 N4 O4 FcOH) है। इसमें लोहा रहता है। इसमें चार पिरोल समूह रहते हैं, जो क्लोरोफिल से समानता रखते हैं। इसका अपचयन और उपचयन सरलता से हो जाता है। अल्प मात्रा में यह सब प्राणियों और पादपों में पाया जाता है। हीमोग्लोबिन क्रिस्टलीय रूप से सरलता से प्राप्त हो सकता है।

    रुधिर परीक्षा के लिए वयस्क व्यक्ति की अंगुली से या शिरा से रुधिर निकाला जाता है। रुधिर को जमने से बचाने के लिए स्कंदन प्रतिरोधी पदार्थ डालते हैं। इसके लिए प्राय: अमोनियम और पोटैशियम ऑक्सेलेट प्रयुक्त किए जाते हैं।

    डबल ऑक्सेलेटेड रुधिर को लेकर, अपकेंद्रित में रखकर, आधे घंटे तक घुमाते हैं। रुधिर का कोशिकायुक्त अंश तल में बैठ जाता है और तरल अंश ऊपर रहता है। यही तरल अंश प्लैज़्मा है।

    RBCs की संख्या का निर्धारण हीमोसाइटोमीटर द्वारा किया जाता है। इसकी संख्या WBCs (White Blood Corpuscles) से अधिक होती है।

    हेमरेज (Haemorrhage) एवं होमोलाइसिस (Haemolysis) से RBCs की संख्या घट जाती है, जिसे एनिमिया (Anaemia) कहा जाता है। RBCs की संख्या में सामान्य स्तर से अधिक वृद्धि पॉलीसाइमिया (polycythemia) कहलाती है।

    श्वेत रुधिर कणिकाएँ (White Blood Corpuscles-WBCs)

    इन्हें ल्यूकोसाइट्स भी कहते है | ये आकार में गोल अथवा अमीबाकार, केन्द्रकयुक्त तथा वर्णकविहीन कणिकाएँ होती हैं। WBCs का आकार RBCs से बड़ा, जबकि संख्या में RBCs से कम होती है। ल्यूकीमिया (रुधिर कैंसर) में WBCs की संख्या बढ़ जाती है। इनका निर्माण श्वेत अस्थि मज्जा में होता है , इनमें हिमोग्लोबिन का अभाव होता है परन्तु केन्द्रक उपस्थित होता है , इनकी संख्या 6000 -8000 प्रतिघन मि.मी होती है | WBC की औसत आयु 45 दिन की होती है | ये लाल रुधिर कोशिकाओं से पूर्णतया भिन्न होती हैं। कुछ श्वेत रुधिर कोशिकाओं में कणिकाएँ होती हैं।

    श्वेत रुधिर कोशिकाओं में जीवाणुओं के भक्षण करने की शक्ति होती है। संक्रामक रोगों के हो जाने पर इनकी संख्या बढ़ जाती है, पर मियादी बुखार, या तपेदिक हो जाने पर इनकी संख्या घट जाती है। श्वेत रुधिर कोशिकाएँ दो प्रकार की होती हैं, एक में कणिकाएँ नहीं होतीं और दूसरी में कणिकाएँ होती हैं। पहले प्रकार को एग्रैन्यूलोसाइट्स (Agranulocytes) और दूसरे प्रकार को ग्रैन्यूलोसाइट्स (Granulocytes) कहते हैं।

    एग्रैन्यूलोसाइट्स कोशिकाएँ दो प्रकार की होती हैं : (1) लसीकाणु (Lymphocyte) कोशिका और (2) मोनोसाइट (Monocyte) कोशिका। लसीका कोशिकाएँ लघु और विशाल दो प्रकार की होती है। मोनोसाइट कुल श्वेत रुधिर कोशिकाओं की 5 से 10 प्रतिशत तक होती हैं।

    ग्रैन्यूलोसाइट कोशिकाएँ तीन प्रकार की होती हैं : (1) न्यूट्रोफिल्स (Neutrophiles, 60 से 70 प्रतिशत), (2) ईओसिनोफिल्स (Eosinophilesm, 1 से 4 प्रतिशत) और (3) बेसोफ़िल्स (Basophiles 0.5 से 1 प्रतिशत)।

    ग्रेन्यूलोसाइट्स (Granulocytes)

    ये कोशिकाएँ लाल अस्थि मज्जा में बनती हैं।

    ये कुल ल्यूकोसाइट्स की लगभग 65% होती हैं।

    ये केन्द्रक के आकार एवं उनके कणों की अभिरंजक क्रियाओं के आधार पर पुनः निम्न प्रकार विभाजित की जा सकती हैं :

    न्यूट्रोफिल्स (Neutrophils)

    ये WBCs की कुल संख्या का लगभग 62% होती है।

    इनके कोशिकाद्रव्य में महीन कण पाए जाते हैं, जो अम्लीय एवं क्षारीय अभिरंजकों द्वारा अभिरंजित होते हैं तथा बैंगनी रंग के दिखाई देते हैं।

    ये शरीर के रक्षक की भाँति कार्य करती हैं

    न्यूट्रोफिल्स शरीर की रक्षा, एसिडोफिल्स घावों को भरने, बेसोफिल्स रुधिर का थक्का जमाने, लिम्फोसाइट प्रतिरक्षियों का संश्लेषण तथा मोनोसाइट जीवाणुओं का भक्षण का कार्य करती है।

    बेसोफिल्स (Basophils)

    ये सायनोफिल्स भी कहलाती हैं।

    कोशिकाद्रव्यी कण बड़े होते हैं, जो नीले रंग के दिखाई पड़ते हैं।

    ये हिपेरिन एवं हिस्टेमिइन (histamine) को स्रावित कर कोशिकाओं में रुधिर का थक्का जमने से रोकती हैं।

    एसिडोफिल्स (Acidophils)

    इनका केन्द्रक द्विपालीयुक्त (bilobed) होता है।

    एलर्जी में इनकी संख्या बढ़ जाती हैं।

    ये घावों को भरने में सहायक होती हैं।

    एग्रेन्यूलोसाइट्स (Agranulocytes)

    ये कुल WBCs का लगभग 35% भाग होती है।

    एग्रेन्यूलोसाइट्स को मोनोसाइट्स (Monocytes) व लिम्फोसाइट्स में विभाजित किया जा सकता है

    मोनोसाइट्स (Monocytes)

    ये सबसे बड़ी ल्यूकोसाइट्स (WBCs) है।

    इनका केन्द्रक अण्डाकार, वृक्क अथवा घोड़े की नाल के आकार का और बाह्य केन्द्रीय होता है।

    इनका निर्माण लिम्फनोड एवं प्लीहा में होता है।

    ये अत्यधिक चल होती हैं तथा जीवाणु एवं अन्य रोगकारक जीवों का भक्षण करने का कार्य करती हैं।

    लिम्फोसाइट्स (Lymphocytes)

    ये ल्यूकोसाइट्स (WBCs) का लगभग 30% भाग बनाती हैं।

    इनका केन्द्रक बड़ा और गोल होता है तथा कोशिकाद्रव्य पतली परिधीय परत बनाता है।

    ये प्रतिरक्षियों का निर्माण कर शरीर के प्रतिरक्षा तन्त्र में महत्त्वपूर्ण भूमिका अदा करती हैं।

    श्वेत रुधिर कोशिकाएँ निम्नलिखित कार्य करती हैं : 

    (1) आगंतुक जीवाणुओं का भक्षण करती हैं,

    (2) ये प्रतिपिंडों की रचना करती हैं,

    (3) हिपेरिन उत्पन्न कर रुधिरवाहिकाओं में ये रुधिर को जमने से रोकती हैं,

    (4) ये प्लाज्मा प्रोटीन और कुछ कोशिका प्रोटीन की भी रचना करती हैं तथा

    (5) हिस्टामिनरोधी कार्य कर शरीर को एलर्जी से बचाने में सहायक होती हैं।

    रुधिर प्लेटलेट्स (Blood Platelets)

    स्तनधारियों में रुधिर प्लेटलेट्स सूक्ष्म, रंगहीन, केन्द्रकविहीन गोलाकार तथा चक्रिक (discoidal) होती है। मेंढ़क के शरीर के रुधिर में छोटी-छोटी तर्क के आकार की केन्द्रक युक्त कोशिका थ्रोम्बोसाइट होती है। ये मेगाफेरियोसाइट कोशिकाओं की कोशिका द्रव्य टुकड़े होते है, ये अनियमित आकृति की होती है | इनमें केंद्रक का अभाव होता है , इनका निर्माण अस्थि मज्जा में होता है | इनका विनाश यकृत प्लीहा में होता है |

    ये प्रति घन मिलीमीटर रुधिर में 2.5 लाख से 5 लाख तक होते हें। इनका आकर 2.5 म्यू होता है। इनका जीवन चक्र चार दिन का होता है। इनके कार्य निम्नलिखित हैं :

    (1) ये रुधिर के जमने (स्क्रंदन) में सहायक होते हैं तथा

    (2) रुधिरवाहिका के किसी कारणवश टूट जाने पर ये टूटे स्थान पर एकत्र होकर कोशिकाओं को स्थिर करते हैं।

    लसीका (Lymph)

    यह अर्ध पारदर्शी क्षारीय तरल है, जो रुधिर कोशिकाओं तथा ऊतक के बीच स्थित होता है। इसमें RBCs अनुपस्थित तथा प्लाज्मा प्रोटीन की मात्रा कम होती है। इसमें प्लाज्मा तथा ल्यूकोसाइट पाई जाती है। रुधिर की अपेक्षा इसमें कैल्शियम, फॉस्फोरस, पोषक पदार्थ एवं ऑक्सीजन की मात्रा कम जबकि CO, एवं अपशिष्ट पदार्थ अधिक मात्रा में पाए जाते हैं।

    लसीका के कार्य (Functions of Lymph)

    • जल का अस्थायी संचय
    • अधिशेष जल का अवशोषण
    • दीर्घाणुओं का परिवहन, जैसे- प्रोटीन, हॉर्मोन आदि को रुधिर परिसंचरण में ले जाता है चूँकि ये अणु रुधिर कोशिकाओं की भित्तियों को नहीं भेद पाते । यही कारण है कि ये अणु सीधे रुधिर परिसंचरण में नहीं पहुँच पाते हैं।
    • वसा का परिवहन
    • संक्रमण से सुरक्षा – लिम्फोसाइट की मौजूदगी के कारण होता है ।

    लसीका एवं रुधिर में अन्तर

    लसिका रुधिर
    लसीका में श्वेत रुधिर कणिकाएँ अधिक संख्या में होती हैं।रुधिर में श्वेत रुधिर कणिकाएँ लसीका के अनुपात में कम संख्या में होती हैं।
    लसीका में फाइब्रिनोजन की मात्रा कम होती है, फिर भी थक्का जमने की शक्ति इसमें निहित होती है।रुधिर में फाइबिनोजन की मात्रा अधिक होती है, जिससे यह आसानी के साथ थक्का बन जाता है।
    लसीका द्रव रंगहीन होता है।रुधिर का रंग लाल होता है।
    लसीका में लाल रुधिर कणिकाएँ कम संख्या में होती हैं।रुधिर में लाल रुधिर कणिकाएँ अधिक संख्या में होती हैं।

    रुधिर का थक्का बनना, या जमना (रुधिर का स्कन्दन) (Blood Coagution)

    रुधिर का रुधिर वाहिकाओं से बाहर आते ही रुधिर के अवयव एक जैल समान संरचना में परिवर्तित हो जाते है , जिसे रक्त स्कंदन कहते है | यह एक सुरक्षात्मक प्रणाली है जो घाव में रोगाणुओं के प्रवेश को रोकती है तथा रुधिर क्षति को रोकती है | सरल शब्रुदों में रुधिर द्रव होता है, पर शरीर से बाहर निकलने पर वह कुछ मिनटों में जम जाता है, जिसे थक्का या रक्त स्कंदनकहते हैं। थक्का बनने के समय का निर्धारण कई विधियों से किया जा सकता है।

    रुधिर का थक्का बनने की विधियाँ या प्रक्रिया

    रुधिर के जमने में (1) प्रथ्रोम्बिन, (2) कैल्सियम परमाणु, (3) फाइब्रिनोजिन और (4) थ्रांबोप्लास्टिन की आवश्यकता होती है। पहले तीन पदार्थ रक्त में रहते हैं और चौथा प्लेटलेट के टूटने से निकलता है। इनके अतिरिक्त ऐंट्थ्राम्बिन और हिपेरिन भी रहते हैं। ताप के नीचा होने और कैल्सियम को निकाल लेने से तथा जल मिलाकर रुधिर के पतला कर देने से रुधिर का जमना रुक जाता है। मैग्नीशियम तथा सोडियम सल्फेट को मिलाने से तथा हिपेरिन, जोंकसत और डिकूमेरिन आदि रुधिर के जमने में बाधक होते हैं। रुधिर के शीघ्र जमने में ऊष्मा, थ्रांबीन, ऐड्रीनलीन, कैल्सियम क्लोराड तथा विटामिन के (k) से सहायता मिलती है।

    जब किसी कटे हुए भाग से रुधिर बाहर निकलता है, तब यह जैली के रूप में कुछ ही मिनटों में जम जाता है। इसे स्कन्दन कहते हैं। रुधिर के थक्का बनने की क्रिया एक जटिल क्रिया है। जब किसी स्थान से रुधिर बढ़ने लगता है और यह वायु के आता है, तो रुधिर में उपस्थित थ्रॉम्बोसाइट्स टूट जाती है तथा इससे एक विशिष्ट रासायनिक पदार्थ  मुक्त होकर रुधिर के प्रोटीन से क्रिया करता है तथा प्रोथॉम्बोप्लास्टीन नामक पदार्थ में बदल जाता है। यह प्रोथॉम्बोप्लास्टीन रुधिर के कैल्शियम आयन से क्रिया करके थ्रॉम्बोप्लस्टीन बनाती है। थॉम्बोप्लास्टीन, कैल्शियम आयन (Ca+) तथा ट्रिपटेज नामक एन्जाइस के साथ क्रिया करके निष्क्रिय प्रोथॉम्बिन को सक्रिय थ्रॉम्बीन नामक पदार्थ में परिवर्तित कर देती है।

    यह सक्रिय थ्रॉम्बिन रुधिर के प्रोटीन फाइब्रिनोजेन पर क्रिया करता है और उसे फाइब्रिन में परिवर्तित कर देता है। फॉइब्रिन बारीक एवं कोमल तन्तुओं का जाल होता है। यह जाल इतना बारीक एवं सूक्ष्म होता है कि इसमें रुधिर के कण, विशेषकर RBC, फँस जाते हैं और एक लाल ठोस पिण्ड-सा बन जाता है। इसे रुधिर थक्का कहते हैं। थक्का बहने वाले रुधिर को बन्द कर देता है। रुधिर स्कन्दन के बाद कुछ पीला-सा पदार्थ रह जाता है जिसे सीरम कहते हैं। सीरम का थक्का नहीं बन सकता क्योंकि इसमें फाइब्रिनोजन नहीं होता हैं। रुधिर में प्रायः एक प्रति स्कन्दन होता है जिसे हिपेरिन कहते हैं। यह प्रोथॉम्बिन के उत्प्ररेण को रोकता है। इसी कारण शरीर में बहते समय रुधिर नहीं जमता।

    रुधिर के थक्का बनने के दौरान होने वाली महत्त्वपूर्ण प्रक्रिया; थ्रॉम्बोप्लास्टिन + प्रोथॉम्बिन + कैल्शियम = थ्रॉम्बिन;
    थ्रॉम्बिन + फाइब्रिनोज़न = फाइब्रिन; फाइब्रिन + रुधिर रुधिराणु = रुधिर का थक्का

    रुधिर वाहिका से निकाले गए रुधिर को जमने से बचाने के लिए उसमें थोड़ा-सा ऑक्जेलेट (सोडियम अयदा पोटैशियम ऑक्जेलेट) मिलाया जाता है।

    रुधिर समूह (Blood Groups)

    रुधिर समूह के खोजकर्ता कार्ल लैण्डस्टीनर थे, जिन्होंने 1902 में इसकी खोज की थी। रुधिर को चार समूहों में बाँटा गया है (i) समूह-A (ii) समूह-B (iii) समूह- AB एवं (iv) समूह – O

    रुधिर समूह-A (Blood Group A)  – इसमें प्रतिजन – A तथा प्रतिरक्षी – b पाए जाते हैं।

    रुधिर समूह-B (Blood Group-B)  – इसमें प्रतिजन – B तथा प्रतिरक्षी – a पाए जाते हैं। रुघिर समूह – AB (Blood Group-AB) इसमें प्रतिरक्षी अनुपस्थित रहता है तथा एन्टीजन- AB रहता है। इस समूह के व्यक्ति किसी भी समूह का रुधिर प्राप्त कर सकता है। इसलिए, इसे सर्वग्राही रुधिर समूह (Universal Blood Recipient) कहते हैं।

    रुधिर समूह-O (Blood Group-O) – इसके खोजकर्ता डी कास्टलो तथा स्टल थे। इसमें प्रतिरक्षी-ab उपस्थित रहता है। लेकिन प्रतिजन अनुपस्थित रहता है। इस समूह का व्यक्ति किसी भी समूह को रुधिर प्रदान कर सकता है। इसलिए, इसे सर्वदाता समूह (Universal Blood Donor) कहते हैं।

    एक रुधिर वर्ग के व्यक्ति को उसी वर्ग का रक्त दिया जा सकता है। दूसरे वर्ग का रक्त देने से उस व्यक्ति की लाल रुधिर कोशिकाएँ अवक्षिप्त हो सकती हैं। पर समान वर्ग का रक्त देने से अवक्षेपण नहीं होता। दूसरे वर्ग का रक्त देने से व्यक्ति की मृत्यु तक हो सकती है। दुर्घटना में कही कट जाने से, या शल्य कर्म में कभी कभी इतना रक्तस्राव होता है कि शरीर में रक्त की मात्रा बहुत कम हो जाती है और व्यक्ति की मृत्यु हो सकती है। ऐसी दशा में रोगी के शरीर में रुधिर पहुँचाने से उसकी प्राणरक्षा संभव होती है। उस समय रुधिरपरीक्षा द्वारा रोगी का रुधिर वर्ग मालूम कर, उसी वर्ग के रुधिरवाले मनुष्य का रुधिर लेकर, रोगी को दिया किंतु ओ (O) वर्ग का रुधिर ऐसा होता है कि उसको अन्य वर्गों के व्यक्ति ग्रहण कर सकते हैं। इस कारण ओ (O) वर्ग के रुधिर वाले व्यक्ति सर्वदाता (Universal Donors) कहे जाते हैं। एबी (AB) वर्ग के रुधिरवाले व्यक्ति अन्य सब वर्गों का रुधिर ग्रहण कर सकते हैं। इसलिए ये व्यक्ति सर्वग्रहणकर्ता (Universal Receipients) कहे जाते हैं। रक्त में आर, एच (Rh) तत्व भी होता है, जिसकी परीक्षा भी आवश्यक है।

    रुधिर समूहलाल रुधिर कणिका में प्रतिजन प्लाज्मा में उपस्थित प्रतिरक्षी रक्तदान की संभावना
    AAbA तथा AB वर्ग के रक्तदान कर सकता है।
    BBaB तथा AB वर्ग को रक्तदान कर सकता है।
    ABA तथा Bकोई नहीकिसी भी वर्ग का रुधिर प्राप्त (सर्वग्राही) कर सकता है, परन्तु केवल AB वर्ग के व्यक्ति को ही रक्तदान कर सकता है।
    Oकोई नहीतथाकिसी भी वर्ग को रक्तदान (सर्वदाता) कर सकता है, परन्तु o से ही रुधिर प्राप्त कर सकता है।

    मानव में रुधिर आधान (Blood Transfusion in Human Being)

    मनुष्य के रुधिर समूहों में सामान्यतया कोई भी रुधिर – अभिश्लेषण (agglutination) नहीं होता। इसका कारण यह है कि किसी भी रुधिर समूह में अनुरूप (corresponding) प्रतिरक्षी एवं प्रतिजन उपस्थित नहीं होते अर्थात् प्रतिजन A के साथ प्रतिरक्षी-a, एन्टीजन-B के साथ प्रतिरक्षी – b उपस्थित नहीं होते।

    यदि किसी रुधिर समूह के रुधिर को किसी ऐसे रुधिर वर्ग के रुधिर में मिश्रित कर दिया जाए जिसमें अनुरूप प्रतिजन एंव प्रतिरक्षी उपस्थित हैं, तब रुधिर की लाल कोशिकाओं का अभिश्लेषण हो जाएगा।

    उदाहरण, A रुधिर समूह के रुधिर का, B रुधिर समूह के रुधिर में मिश्रण कर दें, तो रुधिर कोशिकाओं का अभिश्लेषण हो जाएगा। इसमें लाल रुधिर कोशिकाएँ एक-दूसरे से चिपक जाती हैं।

    इस प्रकार के चिपकाव के फलस्वरूप रुधिर वाहिनियों में अवरोध उत्पन्न हो जाता है एवं प्राणी की मृत्यु हो जाती है। अतः रुधिर आधान में एन्टीजन एवं प्रतिरक्षी का ऐसा ताल-मेल करना चाहिए, जिससे रुधिर का अभिश्लेषण न हो सके।

    हीमोग्लोबिन की मात्रा पुरुषों में 2.5-17.5 ग्राम / 100 घन सेमी तथा स्त्रियों में 11.5-16.6 ग्राम / 100 घन सेमी होती है। रुधिर में प्रोटीन की मात्रा अधिक होती है परन्तु लसीका में कम होती है। ब्लड बैंक में रुधिर 10°C पर सुरक्षित रहता है।

    Rh कारक (Rh-factor)

    1940 में लैण्डस्टीनर और वीनर ने रुधिर में एक अन्य प्रकार के प्रतिजन का पता लगाया। इन्होंने इस प्रतिजन की खोज रीसस नामक बन्दर में की थी। इसलिए, इस प्रतिजन का नामकरण Rh कारक (Rh-factor) किया गया।

    जिन व्यक्तियों के रुधिर में यह तत्व पाया जाता है, उनका रुधिर Rh सहित (Rh+) कहलाता है तथा जिनके रुधिर में नहीं पाया जाता, उनका रुधिर Rh रहित (Rh) कहलाता है। रुधिर आधान के समय Rh-कारक की भी जाँच की जाती है। Rh+ को Rh+ का रुधिर ही दिया जाता है। यदि Rh+ रुधिर वर्ग का रुधिर Rh रुधिर वर्ग वाले व्यक्ति को दिया जाए, तो प्रथम बार कम मात्रा होने के कारण कोई प्रभाव नहीं पड़ेगा। किन्तु, जब दूसरी बार यदि इसी प्रकार रक्ताधान किया जाएगा तो रुधिर अभिश्लेषण के कारण Rh रुधिर वर्ग वाले व्यक्ति की मृत्यु हो जाएगी।

    यदि पिता का रुधिर Rh+ हो तथा माता का रुधिर Rhहो तो जन्म लेने वाले शिशु की जन्म से पहले गर्भावस्था में अथवा जन्म के तुरन्त बाद मृत्यु हो जाती है। ऐसा प्रथम सन्तान के जन्म के समय होता है। इस बीमारी को इरिथ्रोब्लास्टोसिस फीटेलिस (Erythroblastosis Foetalis) कहते हैं।

    विभिन्न समूह वाले माता-पिता से उत्पन्न होने वाले बच्चों के सम्भावित रुधिर समूह

    माता-पिता के रुधिर समूहबच्चों में सम्भावित रुधिर समूहबच्चों में असम्भावित रुधिर समूह
    A x AA या OB या AB
    A x BO, A, B, AB 
    A x ABA, B, ABO
    A x OO या AB या AB
    B x BB या OA, AB
    B x ABA, B, ABO
    B x OO या BA, AB
    AB x ABA, B, ABO
    AB x OA, BO, AB
    O x OOA, B, AB